Article (Périodiques scientifiques)
Supervised Feature Selection with Neuron Evolution in Sparse Neural Networks
Atashgahi, Zahra; Zhang, Xuhao; Kichler, Neil et al.
2023In Transactions on Machine Learning Research
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
2303.07200v2.pdf
Postprint Auteur (1.23 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Science - Neural and Evolutionary Computing; Computer Science - Artificial Intelligence; Computer Science - Learning; Computer Science - Machine Learning; Sparse Neural Networks; Feature Selection
Résumé :
[en] Feature selection that selects an informative subset of variables from data not only enhances the model interpretability and performance but also alleviates the resource demands. Recently, there has been growing attention on feature selection using neural networks. However, existing methods usually suffer from high computational costs when applied to high-dimensional datasets. In this paper, inspired by evolution processes, we propose a novel resource-efficient supervised feature selection method using sparse neural networks, named \enquote{NeuroFS}. By gradually pruning the uninformative features from the input layer of a sparse neural network trained from scratch, NeuroFS derives an informative subset of features efficiently. By performing several experiments on $11$ low and high-dimensional real-world benchmarks of different types, we demonstrate that NeuroFS achieves the highest ranking-based score among the considered state-of-the-art supervised feature selection models. The code is available on GitHub.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Atashgahi, Zahra;  University of Twente
Zhang, Xuhao;  University of Twente
Kichler, Neil;  University of Twente
Liu, Shiwei;  Eindhoven University of Technology
Yin, Lu;  Eindhoven University of Technology
Pechenizkiy, Mykola;  Eindhoven University of Technology
Veldhuis, Raymond;  University of Twente
MOCANU, Decebal Constantin  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS) ; University of Twente ; Eindhoven University of Technology
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Supervised Feature Selection with Neuron Evolution in Sparse Neural Networks
Date de publication/diffusion :
07 février 2023
Titre du périodique :
Transactions on Machine Learning Research
eISSN :
2835-8856
Maison d'édition :
OpenReview, Amherst, Etats-Unis - Massachusetts
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 09 mai 2024

Statistiques


Nombre de vues
84 (dont 1 Unilu)
Nombre de téléchargements
11 (dont 0 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
2

Bibliographie


Publications similaires



Contacter ORBilu