Article (Périodiques scientifiques)
Learning Networks from Gaussian Graphical Models and Gaussian Free Fields
Ghosh, Subhro; Mukherjee, Soumendu Sundar; Tran, Hoang-Son et al.
2024In Journal of Statistical Physics, 191 (4)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Learning Networks from Gaussian Graphical Models and Gaussian Free Fields.pdf
Postprint Éditeur (449.33 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
62F35; Gaussian free field; Gaussian graphical model; Precision matrix; Primary 62F12; Secondary 62F10; Statistical and Nonlinear Physics; Mathematical Physics
Résumé :
[en] We investigate the problem of estimating the structure of a weighted network from repeated measurements of a Gaussian graphical model (GGM) on the network. In this vein, we consider GGMs whose covariance structures align with the geometry of the weighted network on which they are based. Such GGMs have been of longstanding interest in statistical physics, and are referred to as the Gaussian free field (GFF). In recent years, they have attracted considerable interest in the machine learning and theoretical computer science. In this work, we propose a novel estimator for the weighted network (equivalently, its Laplacian) from repeated measurements of a GFF on the network, based on the Fourier analytic properties of the Gaussian distribution. In this pursuit, our approach exploits complex-valued statistics constructed from observed data, that are of interest in their own right. We demonstrate the effectiveness of our estimator with concrete recovery guarantees and bounds on the required sample complexity. In particular, we show that the proposed statistic achieves the parametric rate of estimation for fixed network size. In the setting of networks growing with sample size, our results show that for Erdos–Renyi random graphs G(d, p) above the connectivity threshold, network recovery takes place with high probability as soon as the sample size n satisfies n≫d4logd·p-2.
Disciplines :
Mathématiques
Auteur, co-auteur :
Ghosh, Subhro;  Department of Mathematics, National University of Singapore, Singapore, Singapore
Mukherjee, Soumendu Sundar;  Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Calcutta, India
Tran, Hoang-Son ;  Department of Mathematics, National University of Singapore, Singapore, Singapore
GANGOPADHYAY, Ujan  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Department of Mathematics, National University of Singapore, Singapore, Singapore
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Learning Networks from Gaussian Graphical Models and Gaussian Free Fields
Date de publication/diffusion :
avril 2024
Titre du périodique :
Journal of Statistical Physics
ISSN :
0022-4715
eISSN :
1572-9613
Maison d'édition :
Springer
Volume/Tome :
191
Fascicule/Saison :
4
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
Ministry of Education - Singapore
Subventionnement (détails) :
S.G. was supported in part by the MOE Grants R-146-000-250-133, R-146-000-312-114 and MOE-T2EP20121-0013. S.S.M. was partially supported by an INSPIRE research Grant (DST/INSPIRE/04/2018/002193) from the Department of Science and Technology, Government of India and a Start-Up Grant from Indian Statistical Institute, Kolkata. H.S.T. was supported by the NUS Research Scholarship. We thank Satya Majumdar for helpful suggestions.
Disponible sur ORBilu :
depuis le 22 avril 2024

Statistiques


Nombre de vues
87 (dont 6 Unilu)
Nombre de téléchargements
33 (dont 1 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
OpenCitations
 
0
citations OpenAlex
 
1
citations WoS
 
1

Bibliographie


Publications similaires



Contacter ORBilu