artificial intelligence; conceptual modeling; panel; Information Systems
Abstract :
[en] The following discussion paper summarizes the results of a panel discussion conducted on July 10, 2023 at the International Conference on Software Technologies (ICSOFT) in Rome, Italy. The panelists included Jordi Cabot from Luxembourg Institute of Science and Technology, Luxembourg, Wolfgang Maass from University of Saarland, Germany, and Marten van Sinderen from University of Twente, Netherlands. The panel was moderated by Hans-Georg Fill from University of Fribourg, Switzerland.
Disciplines :
Computer science
Author, co-author :
Fill, Hans-Georg; University of Fribourg, Research Group Digitalization and Information Systems, Fribourg, Switzerland
CABOT, Jordi ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PI Cabot
Maass, Wolfgang; Saarland University and German Research Center for Artificial Intelligence (DFKI), Germany
van Sinderen, Marten; University of Twente, Netherlands
External co-authors :
yes
Language :
English
Title :
AI-Driven Software Engineering – The Role of Conceptual Modeling
Publication date :
24 January 2024
Journal title :
Enterprise Modelling and Information Systems Architectures
Adadi A., Berrada M. (2018) Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). In: IEEE access 6, pp. 52138– 52160
Barenkamp M., Rebstadt J., Thomas O. (2020) Applications of AI in classical software engineering. In: AI Perspectives 2(1), pp. 1–15
Barke S., James M. B., Polikarpova N. (2023) Grounded copilot: How programmers interact with code-generating models. In: Proceedings of the ACM on Programming Languages 7(OOPSLA1), pp. 85–111
Battaglia P. W., Hamrick J. B., Bapst V., SanchezGonzalez A., Zambaldi V., Malinowski M., Tacchetti A., Raposo D., Santoro A., Faulkner R., et al. (2018) Relational inductive biases, deep learning, and graph networks. In: arXiv preprint arXiv:1806.01261
Bézivin J. (2005) On the unification power of models. In: Softw. Syst. Model. 4(2), pp. 171–188
Booch G. (2018) The history of software engineering. In: IEEE Software 35(5), pp. 108–114
Brambilla M., Cabot J., Wimmer M. (2017) Modeldriven software engineering in practice. Morgan & Claypool Publishers
Bucchiarone A., Cabot J., Paige R. F., Pierantonio A. (2020) Grand challenges in model-driven engineering: an analysis of the state of the research. In: Softw. Syst. Model. 19(1), pp. 5–13
Burgueño L., Cabot J., Wimmer M., Zschaler S. (2022) Guest editorial to the theme section on AI-enhanced model-driven engineering. In: Softw. Syst. Model. 21(3), pp. 963–965
Cabot J., Vallecillo A. (2022) Modeling should be an independent scientific discipline. In: Softw. Syst. Model. 21(6), pp. 2101–2107
Cámara J., Troya J., Burgueño L., Vallecillo A. (2023) On the assessment of generative AI in modeling tasks: an experience report with ChatGPT and UML. In: Softw. Syst. Model. 22(3), pp. 781– 793
Carbone M. (2022) When not to use machine learning: a perspective on potential and limitations. In: MRS Bulletin 47, pp. 968–974
Confalonieri R., Weyde T., Besold T. R., del Prado Martín F. M. (2021) Using ontologies to enhance human understandability of global post-hoc explanations of black-box models. In: Artif. Intell. 296, p. 103471
Da Silva A. R. (2015) Model-driven engineering; a survey supported by the unified conceptual model. In: Computer language, Systems & Structures 43, pp. 139–155
Dieste O., Juristo N., Moreno A. M., Pazos J., Sierra A. (2001) Conceptual modeling in software engineering and knowledge engineering: Concepts, Techniques and trends. In: Handbook of Software Engineering and Knowledge Engineering: Volume I: Fundamentals. World Scientific, pp. 733–766
Fettke P. (2009) How conceptual modeling is used. In: Communications of the Association for Information Systems 25(1), p. 43
Fettke P. (2020) Conceptual Modelling and Artificial Intelligence: Overview and research challenges from the perspective of predictive business process management. In: Modellierung 2020, Vienna, Austria Vol. 2542, pp. 157–164
Fill H., Fettke P., Köpke J. (2023) Conceptual Modeling and Large Language Models: Impressions From First Experiments With ChatGPT. In: Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model. 18, p. 3
Fill H., Härer F. (2020) Supporting Trust in Hybrid Intelligence Systems Using Blockchains. In: Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice, AAAI-MAKE 2020. CEUR-WS.org
Fill H., Härer F., Muff F., Curty S. (2021) Towards Augmented Enterprise Models as Low-Code Interfaces to Digital Systems. In: Business Modeling and Software Design-11th International Symposium Vol. 422. Springer, pp. 343–352
Fradkov A. (2020) Early history of machine learning. In: IFAC PapersOnLine 53(2), pp. 1385–1390
Giner-Miguelez J., Gómez A., Cabot J. (2023) A domain-specific language for describing machine learning datasets. In: Journal of Computer Languages 76, p. 101209
Guizzardi G., Pastor O., Storey V. (2023) Thinking fast and slow in software engineering. In: IEEE Software 40(6) forthcoming, pp. 1–3
Gunning D., Aha D. W. (2019) DARPA’s Explainable Artificial Intelligence (XAI) Program. In: AI Mag. 40(2), pp. 44–58
Härer F., Fill H. (2020) Past Trends and Future Prospects in Conceptual Modeling-A Bibliometric Analysis. In: Conceptual Modeling-39th International Conference, ER 2020, Vienna, Austria, November 3-6, 2020, Proceedings. Lecture Notes in Computer Science Vol. 12400. Springer, pp. 34–47
Hutchinson J. E., Whittle J., Rouncefield M. (2014) Model-driven engineering practices in industry: Social, organizational and managerial factors that lead to success or failure. In: Sci. Comput. Program. 89, pp. 144–161
Kahneman D. (2011) Thinking, fast and slow. Farrar, Straus and Giroux
Kaynak O. (2021) The golden age of Artificial Intelligence: Inaugural Editorial. In: Discover Artificial Intelligence 1, pp. 1–7
Kent S. (2002) Model driven engineering. In: Integrated Formal Methods. Lecture Notes in Computer Science Vol. 2335. Springer, pp. 286–298
Kleinberg J., Ludwig J., Mullainathan S. (2016) A guide to solving social problems with machine learning. In: Harvard Business Review Available online: https://hbr.org/2016/12/a-guide-to-solving-social-problems-with-machine-learning (accessed on 13 September 2023)
LeCun Y., Bengio Y., Hinton G. (2015) Deep learning. In: Nature 521(7553), pp. 436–444
Li Y., Choi D., Chung J., Kushman N., Schrittwieser J., Leblond R., Eccles T., Keeling J., Gimeno F., Dal Lago A., et al. (2022) Competitionlevel code generation with alphacode. In: Science 378(6624), pp. 1092–1097
Ma W., Liu S., Wang W., Hu Q., Liu Y., Zhang C., Nie L., Liu Y. (2023) The Scope of ChatGPT in Software Engineering: A Thorough Investigation. In: (arXiv:2305.12138) arXiv:2305.12138 [cs]
Maass W., Castellanos A., Tremblay M. C., Lukyanenko R., Storey V. C. (2022a) AI Explainability: Embedding Conceptual Models. In: Proceedings of the 43rd International Conference on Information Systems, ICIS 2022
Maass W., Castellanos A., Tremblay M. C., Lukyanenko R., Storey V. C. (2022b) Concept Superimposition: Using Conceptual Modeling Method for Explainable AI.. In: AAAI Spring Symposium: MAKE, pp. 1–6
Maass W., Storey V. C. (2021) Pairing conceptual modeling with machine learning. In: Data & Knowledge Engineering 134, p. 101909
Martinez S., Gerard S., Cabot J. (2019) On the Need for Intellectual Property Protection in ModelDriven Co-Engineering Processes. In: 24th International Conference, EMMSAD 2019. Springer, pp. 169–177
McAfee A., Brynjolfsson E. (2012) Big data: the management revolution. In: Harvard Business Review 90(10), pp. 60–68
Michael J., Bork D., Wimmer M., Mayr H. C. (2023) Quo Vadis modeling? In: Software and Systems Modeling
Muff F., Härer F., Fill H. (2022) Trends in Academic and Industrial Research on Business Process Management-A Computational Literature Analysis. In: 55th Hawaii International Conference on System Sciences, HICSS 2022, pp. 1–10
Mussbacher G., Combemale B., Kienzle J., Abrahão S., Ali H., Bencomo N., Búr M., Burgueño L., Engels G., Jeanjean P., Jézéquel J., Kühn T., Mosser S., Sahraoui H. A., Syriani E., Varró D., Weyssow M. (2020) Opportunities in intelligent modeling assistance. In: Softw. Syst. Model. 19(5), pp. 1045–1053
Mylopoulos J. (1992) Conceptual modelling and Telos In: Conceptual Modeling, Databases, and CASE: An Integrated View of Information Systems Development John Wiley & Sons, Inc., pp. 49–68
Mylopoulos J., Borgida A., Yu E. (1997) Representing software engineering knowledge. In: Automated Software Engineering 4, pp. 291–317
Peng S., Kalliamvakou E., Cihon P., Demirer M. (2023) The impact of ai on developer productivity: Evidence from github copilot. In: arXiv preprint arXiv:2302.06590
Proceedings of the AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021), Stanford University. CEUR Workshop Proceedings Vol. 2846. CEUR-WS.org
Proceedings of the AAAI 2022 Spring Symposium on Machine Learning and Knowledge Engineering for Hybrid Intelligence (AAAI-MAKE 2022), Stanford University. CEUR Workshop Proceedings Vol. 3121. CEUR-WS.org
Proceedings of the AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023). CEUR Workshop Proceedings Vol. 3433. CEUR-WS.org
Rich C., Waters R. C. (1988) The programmer’s apprentice: A research overview. In: Computer 21(11), pp. 10–25
Robinson S., Arbez G., Birta L., Tolk A., Wagner G. (2015) Conceptual modelling: definition, purpose and benefits. In: 2015 Winter Simulation Conference. IEEE, pp. 2812–2826
Rosenthal K., Strecker S., Asensio E. S., Snoeck M. (2023) Guest Editorial to the Special Issue on Teaching and Learning Conceptual Modeling. In: Enterprise Modelling and Information Systems Architectures (EMISAJ) – International Journal of Conceptual Modeling 18
Sandkuhl K., Fill H., Hoppenbrouwers S., Krogstie J., Matthes F., Opdahl A. L., Schwabe G., Uludag Ö., Winter R. (2018) From Expert Discipline to Common Practice: A Vision and Research Agenda for Extending the Reach of Enterprise Modeling. In: Bus. Inf. Syst. Eng. 60(1), pp. 69–80
Schmidhuber J. (1993) A neural network that embeds its own meta-levels. In: IEEE International Conference on Neural Networks. IEEE, pp. 407– 412
Sendall S., Kozaczynski W. (2003) Model driven transformation: the heart and soul of model-driven development. In: IEEE Software 20(5), pp. 42–45
Strowel A. (2023) ChatGPT and Generative AI Tools: Theft of Intellectual Labor? In: IIC-International Review of Intellectual Property and Competition Law 54(4), pp. 491–494
Troya J., Moreno N., Bertoa M. F., Vallecillo A. (2021) Uncertainty representation in software models: a survey. In: Softw. Syst. Model. 20(4), pp. 1183–1213
Van Sinderen M., Ferreira Pires L., Vissers C. (1992) Protocol design and implementation using formal methods. In: The Computer Journal 35(5), pp. 478–491
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser Ł., Polosukhin I. (2017) Attention is All you Need. In: Advances in Neural Information Processing Systems Vol. 30. Curran
White J., Hays S., Fu Q., Spencer-Smith J., Schmidt D. C. (Mar. 2023) ChatGPT Prompt Patterns for Improving Code Quality, Refactoring, Requirements Elicitation, and Software Design. In: (arXiv:2303.07839) arXiv:2303.07839 [cs]