Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
AI-enabled Regulatory Change Analysis of Legal Requirements
ABUALHAIJA, Sallam; CECI, Marcello; SANNIER, Nicolas et al.
2024In Proceedings of the 32nd IEEE International Requirements Engineering Conference (RE'24)
Peer reviewed
 

Documents


Texte intégral
ACSBBZB-RE24.pdf
Postprint Auteur (1.04 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Regulatory Change; Prompt Engineering; Natural Language Processing (NLP); Large Language Models (LLMs); ChatGPT; Regulatory Compliance
Résumé :
[en] Statutory law is subject to change as legislation develops over time – new regulation can be introduced, while existing regulation can be amended, or repealed. From a requirements engineering (RE) perspective, such change must be dealt with to ensure the compliance of software systems at all times. Understanding the implications of regulatory change on compliance of software requirements requires navigating hundreds of legal provisions. Analyzing instances of regulatory change entirely manually is not only time-consuming, but also risky, since missing a change may result in non-compliant software which can in turn lead to hefty fines. In this paper, we propose MURCIA, an automated approach that leverages recent language models to assist human analysts in analyzing regulatory changes. To build MURCIA, we define a taxonomy that characterizes the regulatory changes at the textual level as well as the changes in the text’s meaning and legal interpretation. We evaluate MURCIA on four regulations from the financial domain. Over our evaluation set, MURCIA can identify textual changes with F1 score of 90.5%, and it can provide, according to our taxonomy, the text meaning and legal interpretation with an F1 score of 90.8% and 83.7%, respectively.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
NCER-FT - FinTech National Centre of Excellence in Research
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ABUALHAIJA, Sallam  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
CECI, Marcello  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
SANNIER, Nicolas  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
BIANCULLI, Domenico  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Briand, Lionel;  Lero SFI centre for Software Research and University of Limerick ; University of Ottawa > School of EECS
ZETZSCHE, Dirk Andreas  ;  University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Department of Law (DL)
BODELLINI, Marco ;  University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Department of Law (DL)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
AI-enabled Regulatory Change Analysis of Legal Requirements
Date de publication/diffusion :
2024
Nom de la manifestation :
32nd IEEE International Requirements Engineering Conference
Lieu de la manifestation :
Reykjavik, Islande
Date de la manifestation :
from 24 to 28 June, 2024
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 32nd IEEE International Requirements Engineering Conference (RE'24)
Maison d'édition :
IEEE
Pagination :
5-17
Peer reviewed :
Peer reviewed
Projet FnR :
FNR16570468 - 2021 (01/07/2022-30/06/2030) - Yves Le Traon
Intitulé du projet de recherche :
U-AGR-7501 - NCER22/IS/16570468/NCER-FT_AFRICA_UL - BIANCULLI Domenico
Organisme subsidiant :
FNR - Luxembourg National Research Fund
N° du Fonds :
NCER22/IS/16570468/NCER-FT
Disponible sur ORBilu :
depuis le 17 avril 2024

Statistiques


Nombre de vues
921 (dont 87 Unilu)
Nombre de téléchargements
813 (dont 25 Unilu)

citations Scopus®
 
11
citations Scopus®
sans auto-citations
9
OpenCitations
 
0
citations OpenAlex
 
7

Bibliographie


Publications similaires



Contacter ORBilu