Ab initio; Biomolecular dynamics; Chemical fragments; Complex Processes; Dynamics simulation; Forcefields; Large system; Mechanical force fields; Quantum mechanical force; Quantum-mechanical calculation; Multidisciplinary
Abstract :
[en] Molecular dynamics (MD) simulations allow insights into complex processes, but accurate MD simulations require costly quantum-mechanical calculations. For larger systems, efficient but less reliable empirical force fields are used. Machine-learned force fields (MLFFs) offer similar accuracy as ab initio methods at orders-of-magnitude speedup, but struggle to model long-range interactions in large molecules. This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations (GEMS) by training on “bottom-up” and “top-down” molecular fragments, from which the relevant interactions can be learned. GEMS allows nanosecond-scale MD simulations of >25,000 atoms at essentially ab initio quality, correctly predicts dynamical oscillations between different helical motifs in polyalanine, and yields good agreement with terahertz vibrational spectroscopy for large-scale protein-water fluctuations in solvated crambin. Our analyses indicate that simulations at ab initio accuracy might be necessary to understand dynamic biomolecular processes.
Research center :
ULHPC - University of Luxembourg: High Performance Computing
Unke, Oliver T ; Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland ; Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany ; DFG Cluster of Excellence "Unifying Systems in Catalysis" (UniSysCat), Technische Universität Berlin, 10623 Berlin, Germany
Stöhr, Martin ; Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
Ganscha, Stefan ; Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Unterthiner, Thomas ; Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Maennel, Hartmut ; Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Kashubin, Sergii ; Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Ahlin, Daniel ; Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Gastegger, Michael ; Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany ; DFG Cluster of Excellence "Unifying Systems in Catalysis" (UniSysCat), Technische Universität Berlin, 10623 Berlin, Germany ; BASLEARN - TU Berlin/BASF Joint Lab for Machine Learning, Technische Universität Berlin, 10587 Berlin, Germany
Medrano Sandonas, Leonardo ; Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
TKATCHENKO, Alexandre ✱; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Müller, Klaus-Robert ✱; Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland ; Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany ; Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Korea ; Max Planck Institute for Informatics, Stuhlsatzenhausweg, 66123 Saarbrücken, Germany ; BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments.
Publication date :
05 April 2024
Journal title :
Science Advances
eISSN :
2375-2548
Publisher :
American Association for the Advancement of Science, United States
Volume :
10
Issue :
14
Pages :
eadn4397
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Physics and Materials Science Computational Sciences
SNSF - Swiss National Science Foundation FNR - Fonds National de la Recherche BMBF - Bundesministerium für Bildung und Forschung IITP - Institute for Information and communications Technology Promotion ERC - European Research Council Union Européenne
Unke, O. T. (2024). DFT data for "Biomolecular Dynamics with Machine Learned Quantum-Mechanical Force Fields Trained on Diverse Chemical Fragments" [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10720941
M. Karplus, J. A. Mccammon, Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9, 646–652 (2002).
F. Mouvet, J. villard, v. Bolnykh, U. Röthlisberger, Recent advances in first-principles based molecular dynamics. Acc. Chem. Res. 55, 221–230 (2022).
R. h. French, v. A. Parsegian, R. Podgornik, R. F. Rajter, A. Jagota, J. luo, d. Asthagiri, M. K. chaudhury, Y.-M. chiang, S. Granick, long range interactions in nanoscale science. Rev. Mod. Phys. 82, 1887–1944 (2010).
d. e. Shaw, M. M. deneroff, R. O. dror, J. S. Kuskin, R. h. larson, J. K. Salmon, c. Young, B. Batson, K. J. Bowers, J. c. chao, M. P. eastwood, J. Gagliardo, J. P. Grossman, c. R. ho, d. J. ierardi, i. Kolossváry, J. l. Klepeis, t. layman, c. Mcleavey, M. A. Moraes, R. Mueller, e. c. Priest, Y. Shan, J. Spengler, M. theobald, B. towles, S. c. Wang, Anton, a special-purpose machine for molecular dynamics simulation. Commun. ACM 51, 91–97 (2008).
h. M. Senn, W. thiel, QM/MM methods for biomolecular systems. Angew. Chem. Int. 48, 1198–1229 (2009).
h. J. Kulik, J. Zhang, J. P. Klinman, t. J. Martinez, how large should the QM region be in QM/MM calculations? the case of catechol O-methyltransferase. J. Phys. Chem. B 120, 11381–11394 (2016).
O. t. Unke, S. chmiela, h. e. Sauceda, M. Gastegger, i. Poltavsky, K. t. Schütt, A. tkatchenko, K.-R. Müller, Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).
U. Rivero, O. t. Unke, M. Meuwly, S. Willitsch, Reactive atomistic simulations of diels-Alder reactions: the importance of molecular rotations. J. Chem. Phys. 151, 104301 (2019).
h. e. Sauceda, S. chmiela, i. Poltavsky, K.-R. Müller, A. tkatchenko, Molecular force fields with gradient-domain machine learning: construction and application to dynamics of small molecules with coupled cluster forces. J. Chem. Phys. 150, 114102 (2019).
S. chmiela, v. vassilev-Galindo, O. t. Unke, A. Kabylda, h. e. Sauceda, A. tkatchenko, K.-R. Müller, Accurate global machine learning force fields for molecules with hundreds of atoms. Sci. Adv. 9, eadf0873 (2023).
W. Jia, h. Wang, M. chen, d. lu, l. lin, R. car, e. Weinan, l. Zhang, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (ieee, 2020), pp. 1–14.
M. Rossi, W. Fang, A. Michaelides, Stability of complex biomolecular structures: van der Waals, hydrogen bond cooperativity, and nuclear quantum effects. J. Phys. Chem. Lett. 6, 4233–4238 (2015).
M. Stöhr, A. tkatchenko, Quantum mechanics of proteins in explicit water: the role of plasmon-like solute-solvent interactions. Sci. Adv. 5, eaax0024 (2019).
Z. cheng, J. du, l. Zhang, J. Ma, W. li, S. li, Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning. Phys. Chem. Chem. Phys. 24, 1326–1337 (2022).
Y. han, Z. Wang, A. chen, i. Ali, J. cai, S. Ye, J. li, An inductive transfer learning force field (itlFF) protocol builds protein force fields in seconds. Brief. Bioinform. 23, bbab590 (2022).
B. huang, O. A. von lilienfeld, Quantum machine learning using atom-in-molecule-based fragments selected on the fly. Nat. Chem. 12, 945–951 (2020).
O. t. Unke, S. chmiela, M. Gastegger, K. t. Schütt, h. e. Sauceda, K.-R. Müller, Spookynet: learning force fields with electronic degrees of freedom and nonlocal effects. Nat. Commun. 12, 7273 (2021).
J. Behler, Representing potential energy surfaces by high-dimensional neural network potentials. J. Condens. Matter Phys. 26, 183001 (2014).
O. t. Unke, M. Meuwly, Physnet: A neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019).
A. Grisafi, M. ceriotti, incorporating long-range physics in atomic-scale machine learning. J. Chem. Phys. 151, 204105 (2019).
l. Zhang, h. Wang, M. c. Muniz, A. Z. Panagiotopoulos, R. car, W. e, A deep potential model with long-range electrostatic interactions. J. Chem. Phys. 156, 124107 (2022).
t. W. Ko, J. A. Finkler, S. Goedecker, J. Behler, A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun. 12, 1–11 (2021).
e. Balog, J. c. Smith, d. Perahia, conformational heterogeneity and low-frequency vibrational modes of proteins. Phys. Chem. Chem. Phys. 8, 5543–5548 (2006).
K. lindorff-larsen, S. Piana, K. Palmo, P. Maragakis, J. l. Klepeis, R. O. dror, d. e. Shaw, improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78, 1950–1958 (2010).
M. Karplus, t. ichiye, B. Pettitt, configurational entropy of native proteins. Biophys. J. 52, 1083–1085 (1987).
S. Stocker, J. Gasteiger, F. Becker, S. Günnemann, J. Margraf, how robust are modern graph neural network potentials in long and hot molecular dynamics simulations? Mach. Learn. Sci. Technol. 3, 045010 (2022).
M. Gastegger, J. Behler, P. Marquetand, Machine learning molecular dynamics for the simulation of infrared spectra. Chem. Sci. 8, 6924–6935 (2017).
c. Adamo, v. Barone, toward reliable density functional methods without adjustable parameters: the PBe0 model. J. Chem. Phys. 110, 6158–6170 (1999).
A. tkatchenko, R. A. diStasio Jr., R. car, M. Scheffler, Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 108, 236402 (2012).
F. Schubert, M. Rossi, c. Baldauf, K. Pagel, S. Warnke, G. von helden, F. Filsinger, P. Kupser, G. Meijer, M. Salwiczek, B. Koksch, M. Scheffler, v. Blum, exploring the conformational preferences of 20-residue peptides in isolation: Ac-Ala19-lys + h+ vs. Ac-lys-Ala19 + h+ and the current reach of dFt. Phys. Chem. Chem. Phys. 17, 7373–7385 (2015).
c. Baldauf, M. Rossi, Going clean: Structure and dynamics of peptides in the gas phase and paths to solvation. J. Phys. Condens. Matter 27, 493002 (2015).
J. hermann, d. Alfè, A. tkatchenko, nanoscale π-π stacked molecules are bound by collective charge fluctuations. Nat. Commun. 8, 14052 (2017).
J. hoja, h.-Y. Ko, M. A. neumann, R. car, R. A. diStasio, A. tkatchenko, Reliable and practical computational description of molecular crystal polymorphs. Sci. Adv. 5, eaau3338 (2019).
d. Firaha, Y. M. liu, J. van de Streek, K. Sasikumar, h. dietrich, J. helfferich, l. Aerts, d. e. Braun, A. Broo, A. G. diPasquale, A. Y. lee, S. le Meur, S. O. nilsson lill, W. J. lunsmann, A. Mattei, P. Muglia, O. d. Putra, M. Raoui, S. M. Reutzel-edens, S. Rome, A. Y. Sheikh, A. tkatchenko, G. R. Woollam, M. A. neumann, Predicting crystal form stability under real-world conditions. Nature 623, 324–328 (2023).
R. A. diStasio Jr., B. Santra, Z. li, X. Wu, R. car, the individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water. J. Chem. Phys. 141, 084502 (2014).
c. Park, W. A. Goddard, Stabilization of α-helices by dipole−dipole interactions within α-helices. J. Phys. Chem. B 104, 7784–7789 (2000).
M. Kohtani, t. c. Jones, J. e. Schneider, M. F. Jarrold, extreme stability of an unsolvated α-helix. J. Am. Chem. Soc. 126, 7420–7421 (2004).
A. tkatchenko, M. Rossi, v. Blum, J. ireta, M. Scheffler, Unraveling the stability of polypeptide helices: critical role of van der Waals interactions. Phys. Rev. Lett. 106, 118102 (2011).
i. A. topol, S. K. Burt, e. deretey, t.-h. tang, A. Perczel, A. Rashin, i. G. csizmadia, α- and 310-helix interconversion: A quantum-chemical study on polyalanine systems in the gas phase and in aqueous solvent. J. Am. Chem. Soc. 123, 6054–6060 (2001).
G. l. Millhauser, c. J. Stenland, P. hanson, K. A. Bolin, F. J. van de ven, estimating the relative populations of 310-helix and α-helix in Ala-rich peptides: A hydrogen exchange and high field nMR study. J. Mol. Biol. 267, 963–974 (1997).
K. A. Bolin, G. l. Millhauser, α and 310: the split personality of polypeptide helices. Acc. Chem. Res. 32, 1027–1033 (1999).
n. Foloppe, A. d. MacKerell Jr., All-atom empirical force field for nucleic acids: i. parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 86–104 (2000).
c. Oostenbrink, A. villa, A. e. Mark, W. F. van Gunsteren, A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25, 1656–1676 (2004).
F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
M. thomas, M. Brehm, R. Fligg, P. vöhringer, B. Kirchner, computing vibrational spectra from ab initio molecular dynamics. Phys. Chem. Chem. Phys. 15, 6608–6622 (2013).
c. d. craver, The Coblentz Society Desk Book of Infrared Spectra (national Standard Reference data System, 1977).
h.-c. Ahn, n. Juranić, S. Macura, J. l. Markley, three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface. J. Am. Chem. Soc. 128, 4398–4404 (2006).
K. n. Woods, the glassy state of crambin and the thz time scale protein-solvent fluctuations possibly related to protein function. BMC Biophys. 7, 1–15 (2014).
d. A. case, Molecular dynamics and nMR spin relaxation in proteins. Acc. Chem. Res. 35, 325–331 (2002).
S. Piana, K. lindorff-larsen, d. e. Shaw, how robust are protein folding simulations with respect to force field parameterization? Biophys. J. 100, l47–l49 (2011).
R. M. levy, d. Perahia, M. Karplus, Molecular dynamics of an α-helical polypeptide: temperature dependence and deviation from harmonic behavior. Proc. Natl. Acad. Sci. U.S.A. 79, 1346–1350 (1982).
J. A. Mccammon, B. R. Gelin, M. Karplus, dynamics of folded proteins. Nature 267, 585–590 (1977).
d. Phillips, Biomolecular Stereodynamics (Adenine Press, 1981).
h. e. Sauceda, v. vassilev-Galindo, S. chmiela, K.-R. Müller, A. tkatchenko, dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature. Nat. Commun. 12, 442 (2021).
B. hess, c. Kutzner, d. van der Spoel, e. lindahl, GROMAcS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).
K. Saravanan, J. R. Kitchin, O. A. von lilienfeld, J. A. Keith, Alchemical predictions for computational catalysis: Potential and limitations. J. Phys. Chem. Lett. 8, 5002–5007 (2017).
F. R. Beierlein, G. G. Kneale, t. clark, Predicting the effects of basepair mutations in dnA-protein complexes by thermodynamic integration. Biophys. J. 101, 1130–1138 (2011).
M. Krepl, M. Otyepka, P. Banáš, J. Šponer, effect of guanine to inosine substitution on stability of canonical dnA and RnA duplexes: Molecular dynamics thermodynamics integration study. J. Phys. Chem. B 117, 1872–1879 (2013).
e. di cera, Site-specific thermodynamics: Understanding cooperativity in molecular recognition. Chem. Rev. 98, 1563–1592 (1998).
A. S. Raman, K. i. White, R. Ranganathan, Origins of allostery and evolvability in proteins: A case study. Cell 166, 468–480 (2016).
d. Wrapp, n. Wang, K. S. corbett, J. A. Goldsmith, c.-l. hsieh, O. Abiona, B. S. Graham, J. S. Mclellan, cryo-eM structure of the 2019-ncov spike in the prefusion conformation. Science 367, 1260–1263 (2020).
n. M. O’Boyle, M. Banck, c. A. James, c. Morley, t. vandermeersch, G. R. hutchison, Open Babel: An open chemical toolbox. J. Chem. 3, 1–14 (2011).
O. Unke, M. Meuwly, Solvated protein fragments data set (2019); https://doi.org/10.5281/zenodo.2605371.
R. M. Parrish, l. A. Burns, d. G. A. Smith, A. c. Simmonett, A. e. dePrince, e. G. hohenstein, U. Bozkaya, A. Y. Sokolov, R. di Remigio, R. M. Richard, J. F. Gonthier, A. M. James, h. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard, P. verma, h. F. Schaefer, K. Patkowski, R. A. King, e. F. valeev, F. A. evangelista, J. M. turney, t. d. crawford, c. d. Sherrill, Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. J. Chem. Theory Comput. 13, 3185–3197 (2017).
J. t. Barron, A general and adaptive robust loss function. Proc. IEEE Int. Conf. Comput. Vis., 4331–4339 (2019).
l. Konermann, h. Metwally, R. G. McAllister, v. Popa, how to run molecular dynamics simulations on electrospray droplets and gas phase proteins: Basic guidelines and selected applications. Methods 144, 104–112 (2018).
G. Bussi, d. donadio, M. Parrinello, canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
M. d. hanwell, d. e. curtis, d. c. lonie, t. vandermeersch, e. Zurek, G. R. hutchison, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Chem. 4, 1–17 (2012).
d. Bang, v. tereshko, A. A. Kossiakoff, S. B. Kent, Role of a salt bridge in the model protein crambin explored by chemical protein synthesis: X-ray structure of a unique protein analogue, [v15A]crambin-α-carboxamide. Mol. Biosyst. 5, 750–756 (2009).
W. l. delano, PyMOl: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40, 82–92 (2002).
c. Jelsch, M. M. teeter, v. lamzin, v. Pichon-Pesme, R. h. Blessing, c. lecomte, Accurate protein crystallography at ultra-high resolution: valence electron distribution in crambin. Proc. Natl. Acad. Sci. U.S.A. 97, 3171–3176 (2000).
A. Schmidt, M. teeter, e. Weckert, v. S. lamzin, crystal structure of small protein crambin at 0.48 Å resolution. Acta Crystallogr. F 67, 424–428 (2011).
J. M. delgado, n. duro, d. M. Rogers, A. tkatchenko, S. A. Pandit, S. varma, Molecular basis for higher affinity of SARS-cov-2 spike RBd for human Ace2 receptor. Proteins 89, 1134–1144 (2021).
K. Schütt, P. Kessel, M. Gastegger, K. nicoli, A. tkatchenko, K.-R. Müller, SchnetPack: A deep learning toolbox for atomistic systems. J. Chem. Theory Comput. 15, 448–455 (2018).
G. J. Martyna, M. e. tuckerman, d. J. tobias, M. l. Klein, explicit reversible integrators for extended systems dynamics. Mol. Phys. 87, 1117–1157 (1996).
l. Wilson, R. Krasny, t. luchko, Accelerating the 3d reference interaction site model theory of molecular solvation with treecode summation and cut-offs. J. Comput. Chem. 43, 1251–1270 (2022).
G. Bussi, M. Parrinello, Accurate sampling using langevin dynamics. Phys. Rev. B 75, 056707 (2007).
d. Frishman, P. Argos, Knowledge-based protein secondary structure assignment. Proteins 23, 566–579 (1995).
l. Mcinnes, J. healy, J. Melville, UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 [stat.Ml] (2018).
P. l. Freddolino, A. S. Arkhipov, S. B. larson, A. McPherson, K. Schulten, Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14, 437–449 (2006).
G. Zhao, J. R. Perilla, e. l. Yufenyuy, X. Meng, B. chen, J. ning, J. Ahn, A. M. Gronenborn, K. Schulten, c. Aiken, P. Zhang, Mature hiv-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497, 643–646 (2013).
M. i. Zimmerman, J. R. Porter, M. d. Ward, S. Singh, n. vithani, A. Meller, U. l. Mallimadugula, c. e. Kuhn, J. h. Borowsky, R. P. Wiewiora, citizen scientists create an exascale computer to combat cOvid-19. bioRxiv 2020.06.27.175430 [Preprint] (2020). https://doi.org/10.1101/2020.06.27.175430.
J. e. lennard-Jones, On the determination of molecular fields—ii. From the equation of state of a gas. Proc. R. Soc. Lond. A 106, 463–477 (1924).
M. González, École Thématique de la Société Française de la Neutronique (edP Sciences, 2011), vol. 12, pp. 169–200.
O. t. Unke, d. Koner, S. Patra, S. Käser, M. Meuwly, high-dimensional potential energy surfaces for molecular simulations: From empiricism to machine learning. Mach. Learn. Sci. Technol. 1, 13001 (2020).
F. vitalini, A. S. Mey, F. noé, B. G. Keller, dynamic properties of force fields. J. Chem. Phys. 142, 02B611_1 (2015).
t. A. halgren, W. damm, Polarizable force fields. Curr. Opin. Struct. Biol. 11, 236–242 (2001).
A. Warshel, M. Kato, A. v. Pisliakov, Polarizable force fields: history, test cases, and prospects. J. Chem. Theory Comput. 3, 2034–2045 (2007).
t. d. Rasmussen, P. Ren, J. W. Ponder, F. Jensen, Force field modeling of conformational energies: importance of multipole moments and intramolecular polarization. Int. J. Quantum Chem. 107, 1390–1395 (2007).
M. G. darley, c. M. handley, P. l. Popelier, Beyond point charges: dynamic polarization from neural net predicted multipole moments. J. Chem. Theory Comput. 4, 1435–1448 (2008).
S. M. Kandathil, t. l. Fletcher, Y. Yuan, J. Knowles, P. l. Popelier, Accuracy and tractability of a Kriging model of intramolecular polarizable multipolar electrostatics and its application to histidine. J. Comput. Chem. 34, 1850–1861 (2013).
S. cardamone, t. J. hughes, P. l. Popelier, Multipolar electrostatics. Phys. Chem. Chem. Phys. 16, 10367–10387 (2014).
O. t. Unke, M. devereux, M. Meuwly, Minimal distributed charges: Multipolar quality at the cost of point charge electrostatics. J. Chem. Phys. 147, 161712 (2017).
A. Warshel, R. M. Weiss, An empirical valence bond approach for comparing reactions in solutions and in enzymes. J. Am. Chem. Soc. 102, 6218–6226 (1980).
A. c. van duin, S. dasgupta, F. lorant, W. A. Goddard, ReaxFF: A reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).
J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
P. l. Popelier, QctFF: On the construction of a novel protein force field. Int. J. Quantum Chem. 115, 1005–1011 (2015).
J. S. Smith, O. isayev, A. e. Roitberg, Ani-1: An extensible neural network potential with dFt accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017).
J. Behler, First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew. Chem. Int. Ed. 56, 12828–12840 (2017).
J. Behler, Four generations of high-dimensional neural network potentials. Chem. Rev. 121, 10037–10072 (2021).
S. chmiela, A. tkatchenko, h. e. Sauceda, i. Poltavsky, K. t. Schütt, K.-R. Müller, Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017).
S. chmiela, h. e. Sauceda, K.-R. Müller, A. tkatchenko, towards exact molecular dynamics simulations with machine-learned force fields. Nat. Commun. 9, 3887 (2018).
K. t. Schütt, S. chmiela, O. A. von lilienfeld, A. tkatchenko, K. tsuda, K.-R. Müller, Machine learning meets quantum physics, in Lecture Notes in Physics (Springer, 2020).
M. Rupp, A. tkatchenko, K.-R. Müller, O. A. von lilienfeld, Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
G. Montavon, M. Rupp, v. Gobre, A. vazquez-Mayagoitia, K. hansen, A. tkatchenko, K.-R. Müller, O. A. von lilienfeld, Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15, 095003 (2013).
K. hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O. A. von lilienfeld, A. tkatchenko, K.-R. Müller, Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9, 3404–3419 (2013).
K. hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O. A. von lilienfeld, K.-R. Muller, A. tkatchenko, Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6, 2326–2331 (2015).
l. Boninsegna, F. nüske, c. clementi, Sparse learning of stochastic dynamical equations. J. Chem. Phys. 148, 241723 (2018).
F. noé, S. Olsson, J. Köhler, h. Wu, Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. Science 365, eaaw1147 (2019).
J. Köhler, l. Klein, F. noé, equivariant flows: exact likelihood generative learning for symmetric densities. arXiv:2006.02425 [stat.Ml] (2020).
J. Zhang, Y. i. Yang, F. noé, targeted adversarial learning optimized sampling. J. Phys. Chem. Lett. 10, 5791–5797 (2019).
d. Koner, O. t. Unke, K. Boe, R. J. Bemish, M. Meuwly, exhaustive state-to-state cross sections for reactive molecular collisions from importance sampling simulation and a neural network representation. J. Chem. Phys. 150, 211101 (2019).
A. W. Senior, R. evans, J. Jumper, J. Kirkpatrick, l. Sifre, t. Green, c. Qin, A. Zidek, A. W. nelson, A. Bridgland, h. Penedones, S. Petersen, K. Simonyan, S. crossan, P. Kohli, d. t. Jones, d. Silver, K. Kavukcuoglu, d. hassabis, improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).
J. Jumper, R. evans, A. Pritzel, t. Green, M. Figurnov, O. Ronneberger, K. tunyasuvunakool, R. Bates, A. Zidek, A. Potapenko, A. Bridgland, c. Meyer, S. A. A. Kohl, A. J. Ballard, A. cowie, B. Romera-Paredes, S. nikolov, R. Jain, J. Adler, t. Back, S. Petersen, d. Reiman, e. clancy, M. Zielinski, M. Steinegger, M. Pacholska, t. Berghammer, S. Bodenstein, d. Silver, O. vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, d. hassabis, highly accurate protein structure prediction with AlphaFold. Nature, 596 , 583–589 (2021).
K. tunyasuvunakool, J. Adler, Z. Wu, t. Green, M. Zielinski, A. Zidek, A. Bridgland, A. cowie, c. Meyer, A. laydon, S. velankar, G. J. Kleywegt, A. Bateman, R. evans, A. Pritzel, M. Figurnov, O. Ronneberger, R. Bates, S. A. A. Kohl, A. Potapenko, A. J. Ballard, B. Romera-Paredes, S. nikolov, R. Jain, e. clancy, d. Reimann, S. Petersen, A. W. Senior, K. Kavukcuoglu, e. Birney, P. Kohli, J. Jumper, d. hassabis, highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).
G. carleo, M. troyer, Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).
d. Pfau, J. S. Spencer, A. G. Matthews, W. M. c. Foulkes, Ab initio solution of the many-electron Schrödinger equation with deep neural networks. Phys. Rev. Res. 2, 033429 (2020).
J. hermann, Z. Schätzle, F. noé, deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020).
K. Schütt, M. Gastegger, A. tkatchenko, K.-R. Müller, R. J. Maurer, Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions. Nat. Commun. 10, 5024 (2019).
M. Gastegger, A. McSloy, M. luya, K. Schütt, R. Maurer, A deep neural network for molecular wave functions in quasi-atomic minimal basis representation. J. Chem. Phys. 153, 044123 (2020).
O. Unke, M. Bogojeski, M. Gastegger, M. Geiger, t. Smidt, K.-R. Müller, Se(3)-equivariant prediction of molecular wavefunctions and electronic densities. Adv. Neur. Inform. Process. Syst. 34, 1 (2021).
M. Gastegger, K. t. Schütt, K.-R. Müller, Machine learning of solvent effects on molecular spectra and reactions. Chem. Sci. 12, 11473–11483 (2021).
M. Popova, O. isayev, A. tropsha, deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).
M. Popova, M. Shvets, J. Oliva, O. isayev, MolecularRnn: Generating realistic molecular graphs with optimized properties. arXiv:1905.13372 [cs.lG] (2019).
n. W. Gebauer, M. Gastegger, K. t. Schütt, NeurIPS 2018 Workshop on Machine Learning for Molecules and Materials (2018).
n. Gebauer, M. Gastegger, K. Schütt, Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules. Adv. Neural. Inf. Process. Syst., 7566–7578 (2019).
M. hoffmann, F. noé, Generating valid euclidean distance matrices. arXiv:1910.03131 [cs. lG] (2019).
R. Winter, F. Montanari, A. Steffen, h. Briem, F. noé, d.-A. clevert, efficient multi-objective molecular optimization in a continuous latent space. Chem. Sci. 10, 8016–8024 (2019).
n. W. Gebauer, M. Gastegger, S. S. hessmann, K.-R. Müller, K. t. Schütt, inverse design of 3d molecular structures with conditional generative neural networks. Nat. Commun. 13, 973 (2022).
F. Strieth-Kalthoff, F. Sandfort, M. h. Segler, F. Glorius, Machine learning the ropes: Principles, applications and directions in synthetic chemistry. Chem. Soc. Rev. 49, 6154–6168 (2020).
A. Jain, S. P. Ong, G. hautier, W. chen, W. d. Richards, S. dacek, S. cholia, d. Gunter, d. Skinner, G. ceder, K. A. Persson, commentary: the materials project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
c. c. Fischer, K. J. tibbetts, d. Morgan, G. ceder, Predicting crystal structure by merging data mining with quantum mechanics. Nat. Mater. 5, 641–646 (2006).
d. P. tabor, l. M. Roch, S. K. Saikin, c. Kreisbeck, d. Sheberla, J. h. Montoya, S. dwaraknath, M. Aykol, c. Ortiz, h. tribukait, c. Amador-Bedolla, c. J. Brabec, B. Maruyama, K. A. Persson, A. Aspuru-Guzik, Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).
K. t. Butler, d. W. davies, h. cartwright, O. isayev, A. Walsh, Machine learning for molecular and materials science. Nature 559, 547–555 (2018).
P. de luna, J. Wei, Y. Bengio, A. Aspuru-Guzik, e. Sargent, Use machine learning to find energy materials. Nature 552, 23–27 (2017).
G. l. hart, t. Mueller, c. toher, S. curtarolo, Machine learning for alloys. Nat. Rev. Mater. 6, 730–755 (2021).
F. noé, A. tkatchenko, K.-R. Müller, c. clementi, Machine learning for molecular simulation. Annu. Rev. Phys. Chem. 71, 361–390 (2020).
O. A. von lilienfeld, K.-R. Müller, A. tkatchenko, exploring chemical compound space with quantum-based machine learning. Nat. Rev. Chem. 4, 347–358 (2020).
B. huang, O. A. von lilienfeld, Ab initio machine learning in chemical compound space. Chem. Rev. 121, 10001–10036 (2021).
O. A. von lilienfeld, K. Burke, Retrospective on a decade of machine learning for chemical discovery. Nat. Commun. 11, 4895 (2020).
A. tkatchenko, Machine learning for chemical discovery. Nat. Commun. 11, 4125 (2020).
J. A. Keith, v. vassilev-Galindo, B. cheng, S. chmiela, M. Gastegger, K.-R. Müller, A. tkatchenko, combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 121, 9816–9872 (2021).
A. Glielmo, B. e. husic, A. Rodriguez, c. clementi, F. noé, A. laio, Unsupervised learning methods for molecular simulation data. Chem. Rev. 121, 9722–9758 (2021).
M. Meuwly, Machine learning for chemical reactions. Chem. Rev. 121, 10218–10239 (2021).
J. Westermayr, P. Marquetand, Machine learning for electronically excited states of molecules. Chem. Rev. 121, 9873–9926 (2021).
B. J. Frey, d. dueck, clustering by passing messages between data points. Science 315, 972–976 (2007).
A. h. larsen, J. J. Mortensen, J. Blomqvist, i. e. castelli, R. christensen, M. dułak, J. Friis, M. n. Groves, B. hammer, c. hargus, the atomic simulation environment—A Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).
J. A. Morrone, R. car, nuclear quantum effects in water. Phys. Rev. Lett. 101, 017801 (2008).
G. hura, J. M. Sorenson, R. M. Glaeser, t. head-Gordon, A high-quality x-ray scattering experiment on liquid water at ambient conditions. J. Chem. Phys. 113, 9140–9148 (2000).