Article (Périodiques scientifiques)
Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments.
Unke, Oliver T; Stöhr, Martin; Ganscha, Stefan et al.
2024In Science Advances, 10 (14), p. 4397
Peer reviewed vérifié par ORBi Dataset
 

Documents


Texte intégral
sciadv.adn4397.pdf
Postprint Éditeur (3.33 MB) Licence Creative Commons - Transfert dans le Domaine Public
Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
Télécharger
Annexes
sciadv.adn4397_sm.pdf
(17.43 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Ab initio; Biomolecular dynamics; Chemical fragments; Complex Processes; Dynamics simulation; Forcefields; Large system; Mechanical force fields; Quantum mechanical force; Quantum-mechanical calculation; Multidisciplinary
Résumé :
[en] Molecular dynamics (MD) simulations allow insights into complex processes, but accurate MD simulations require costly quantum-mechanical calculations. For larger systems, efficient but less reliable empirical force fields are used. Machine-learned force fields (MLFFs) offer similar accuracy as ab initio methods at orders-of-magnitude speedup, but struggle to model long-range interactions in large molecules. This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations (GEMS) by training on “bottom-up” and “top-down” molecular fragments, from which the relevant interactions can be learned. GEMS allows nanosecond-scale MD simulations of >25,000 atoms at essentially ab initio quality, correctly predicts dynamical oscillations between different helical motifs in polyalanine, and yields good agreement with terahertz vibrational spectroscopy for large-scale protein-water fluctuations in solvated crambin. Our analyses indicate that simulations at ab initio accuracy might be necessary to understand dynamic biomolecular processes.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Physique
Sciences informatiques
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Unke, Oliver T ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland ; Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany ; DFG Cluster of Excellence "Unifying Systems in Catalysis" (UniSysCat), Technische Universität Berlin, 10623 Berlin, Germany
Stöhr, Martin ;  Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
Ganscha, Stefan ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Unterthiner, Thomas ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Maennel, Hartmut ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Kashubin, Sergii ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Ahlin, Daniel ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Gastegger, Michael ;  Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany ; DFG Cluster of Excellence "Unifying Systems in Catalysis" (UniSysCat), Technische Universität Berlin, 10623 Berlin, Germany ; BASLEARN - TU Berlin/BASF Joint Lab for Machine Learning, Technische Universität Berlin, 10587 Berlin, Germany
Medrano Sandonas, Leonardo ;  Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
BERRYMAN, Josh  ;  University of Luxembourg
TKATCHENKO, Alexandre   ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Müller, Klaus-Robert  ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland ; Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany ; Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Korea ; Max Planck Institute for Informatics, Stuhlsatzenhausweg, 66123 Saarbrücken, Germany ; BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
 Ces auteurs ont contribué de façon équivalente à la publication.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments.
Date de publication/diffusion :
05 avril 2024
Titre du périodique :
Science Advances
eISSN :
2375-2548
Maison d'édition :
American Association for the Advancement of Science, Etats-Unis
Volume/Tome :
10
Fascicule/Saison :
14
Pagination :
eadn4397
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Physics and Materials Science
Computational Sciences
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
Projet européen :
H2020 - 725291 - BeStMo - Beyond Static Molecules: Modeling Quantum Fluctuations in Complex Molecular Environments
Projet FnR :
CNDTEC 11274975
Organisme subsidiant :
SNSF - Swiss National Science Foundation
FNR - Fonds National de la Recherche
BMBF - Bundesministerium für Bildung und Forschung
IITP - Institute for Information and communications Technology Promotion
ERC - European Research Council
Union Européenne
N° du Fonds :
P2BSP2_188147; 11274975; 01IS14013A-E, 01GQ1115, 01GQ0850, 01IS18025A, 031L0207D, and 01IS18037A; 2019-0-00079; 2022-0-00984; 725291
Jeu de données :
DFT data for "Biomolecular Dynamics with Machine Learned Quantum-Mechanical Force Fields Trained on Diverse Chemical Fragments"

Unke, O. T. (2024). DFT data for "Biomolecular Dynamics with Machine Learned Quantum-Mechanical Force Fields Trained on Diverse Chemical Fragments" [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10720941

Disponible sur ORBilu :
depuis le 17 avril 2024

Statistiques


Nombre de vues
215 (dont 14 Unilu)
Nombre de téléchargements
129 (dont 7 Unilu)

citations Scopus®
 
64
citations Scopus®
sans auto-citations
52
citations OpenAlex
 
79

Bibliographie


Publications similaires



Contacter ORBilu