Article (Scientific journals)
Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments.
Unke, Oliver T; Stöhr, Martin; Ganscha, Stefan et al.
2024In Science Advances, 10 (14), p. 4397
Peer Reviewed verified by ORBi Dataset
 

Files


Full Text
sciadv.adn4397.pdf
Publisher postprint (3.33 MB) Creative Commons License - Public Domain Dedication
Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
Download
Annexes
sciadv.adn4397_sm.pdf
(17.43 MB) Creative Commons License - Attribution
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Ab initio; Biomolecular dynamics; Chemical fragments; Complex Processes; Dynamics simulation; Forcefields; Large system; Mechanical force fields; Quantum mechanical force; Quantum-mechanical calculation; Multidisciplinary
Abstract :
[en] Molecular dynamics (MD) simulations allow insights into complex processes, but accurate MD simulations require costly quantum-mechanical calculations. For larger systems, efficient but less reliable empirical force fields are used. Machine-learned force fields (MLFFs) offer similar accuracy as ab initio methods at orders-of-magnitude speedup, but struggle to model long-range interactions in large molecules. This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations (GEMS) by training on “bottom-up” and “top-down” molecular fragments, from which the relevant interactions can be learned. GEMS allows nanosecond-scale MD simulations of >25,000 atoms at essentially ab initio quality, correctly predicts dynamical oscillations between different helical motifs in polyalanine, and yields good agreement with terahertz vibrational spectroscopy for large-scale protein-water fluctuations in solvated crambin. Our analyses indicate that simulations at ab initio accuracy might be necessary to understand dynamic biomolecular processes.
Research center :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Physics
Computer science
Biochemistry, biophysics & molecular biology
Author, co-author :
Unke, Oliver T ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland ; Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany ; DFG Cluster of Excellence "Unifying Systems in Catalysis" (UniSysCat), Technische Universität Berlin, 10623 Berlin, Germany
Stöhr, Martin ;  Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
Ganscha, Stefan ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Unterthiner, Thomas ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Maennel, Hartmut ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Kashubin, Sergii ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Ahlin, Daniel ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
Gastegger, Michael ;  Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany ; DFG Cluster of Excellence "Unifying Systems in Catalysis" (UniSysCat), Technische Universität Berlin, 10623 Berlin, Germany ; BASLEARN - TU Berlin/BASF Joint Lab for Machine Learning, Technische Universität Berlin, 10587 Berlin, Germany
Medrano Sandonas, Leonardo ;  Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
BERRYMAN, Josh  ;  University of Luxembourg
TKATCHENKO, Alexandre   ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Müller, Klaus-Robert  ;  Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland ; Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany ; Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Korea ; Max Planck Institute for Informatics, Stuhlsatzenhausweg, 66123 Saarbrücken, Germany ; BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
 These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments.
Publication date :
05 April 2024
Journal title :
Science Advances
eISSN :
2375-2548
Publisher :
American Association for the Advancement of Science, United States
Volume :
10
Issue :
14
Pages :
eadn4397
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Physics and Materials Science
Computational Sciences
Development Goals :
9. Industry, innovation and infrastructure
European Projects :
H2020 - 725291 - BeStMo - Beyond Static Molecules: Modeling Quantum Fluctuations in Complex Molecular Environments
FnR Project :
CNDTEC 11274975
Funders :
SNSF - Swiss National Science Foundation
FNR - Fonds National de la Recherche
BMBF - Bundesministerium für Bildung und Forschung
IITP - Institute for Information and communications Technology Promotion
ERC - European Research Council
Union Européenne
Funding number :
P2BSP2_188147; 11274975; 01IS14013A-E, 01GQ1115, 01GQ0850, 01IS18025A, 031L0207D, and 01IS18037A; 2019-0-00079; 2022-0-00984; 725291
Data Set :
DFT data for "Biomolecular Dynamics with Machine Learned Quantum-Mechanical Force Fields Trained on Diverse Chemical Fragments"

Unke, O. T. (2024). DFT data for "Biomolecular Dynamics with Machine Learned Quantum-Mechanical Force Fields Trained on Diverse Chemical Fragments" [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10720941

Available on ORBilu :
since 17 April 2024

Statistics


Number of views
211 (14 by Unilu)
Number of downloads
127 (7 by Unilu)

Scopus citations®
 
64
Scopus citations®
without self-citations
52
OpenAlex citations
 
79

Bibliography


Similar publications



Contact ORBilu