V.L. Feigin et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015 Lancet Neurol. 2017 16 877 897
K. Kieburtz et al. Effect of Creatine monohydrate on clinical progression in patients with Parkinson Disease: A randomized clinical trial JAMA 2015 313 584 25668262
A.E. Lang et al. Trial of Cinpanemab in early Parkinson’s disease N. Engl. J. Med 2022 387 408 420 1:CAS:528:DC%2BB38Xit1ersb%2FP 35921450
G. Pagano et al. Trial of Prasinezumab in early-stage Parkinson’s disease N. Engl. J. Med 2022 387 421 432 1:CAS:528:DC%2BB38Xit1ersb7O 35921451
The Parkinson Study Group SURE-PD3 Investigators et al. Effect of urate-elevating Inosine on early Parkinson disease progression: The SURE-PD3 randomized clinical trial JAMA 2021 326 926
J.C. Greenland C.H. Williams-Gray R.A. Barker The clinical heterogeneity of Parkinson’s disease and its therapeutic implications Eur. J. Neurosci. 2019 49 328 338 30059179
D. Berg et al. Prodromal Parkinson disease subtypes — key to understanding heterogeneity Nat. Rev. Neurol. 2021 17 349 361 33879872
J. Horsager et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study Brain 2020 143 3077 3088 32830221
P. Borghammer The α-Synuclein Origin and Connectome Model (SOC Model) of Parkinson’s Disease: Explaining motor asymmetry, non-motor phenotypes, and cognitive decline JPD 2021 11 455 474 1:CAS:528:DC%2BB3MXosFKjsb8%3D 33682732
R.T. Gerraty et al. Machine learning within the Parkinson’s progression markers initiative: Review of the current state of affairs Front. Aging Neurosci. 2023 15 1076657 1:CAS:528:DC%2BB3sXhtFCqsb7F 36861121 9968811
C. Birkenbihl et al. Artificial intelligence-based clustering and characterization of Parkinson’s disease trajectories Sci. Rep. 2023 13 1:CAS:528:DC%2BB3sXjsFCmtbk%3D 36801900 9938890
X. Zhang et al. Data-driven subtyping of Parkinson’s disease using longitudinal clinical records: a cohort study Sci. Rep. 2019 9 30692568 6349906
S.-M. Fereshtehnejad et al. New clinical subtypes of Parkinson disease and their longitudinal progression: a prospective cohort comparison with other phenotypes JAMA Neurol. 2015 72 863 873 26076039
A. Dadu et al. Identification and prediction of Parkinson’s disease subtypes and progression using machine learning in two cohorts npj Parkinsons Dis. 2022 8 172 36526647 9758217
D. Belvisi et al. Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson’s disease: What do prospective studies suggest? Neurobiol. Dis. 2020 134 1:CAS:528:DC%2BC1MXitFOrtrbM 31706021
B. Mollenhauer et al. Baseline predictors for progression 4 years after Parkinson’s disease diagnosis in the De Novo Parkinson Cohort (DeNoPa) Mov. Disord. 2019 34 67 77 30468694
UCB Biopharma SRL. A Double-Blind, Placebo-Controlled, Randomized, 18-Month Phase 2a Study to Evaluate the Efficacy, Safety, Tolerability, and Pharmacokinetics of Oral UCB0599 in Study Participants With Early Parkinson’s Disease. https://clinicaltrials.gov/study/NCT04658186 (2023).
H. Braak et al. Staging of brain pathology related to sporadic Parkinson’s disease Neurobiol. Aging 2003 24 197 211 12498954
I. Koval et al. Forecasting individual progression trajectories in Huntington disease enables more powered clinical trials Sci. Rep. 2022 12 1:CAS:528:DC%2BB38XivVCqur3I 36344508 9640581
D. Li S. Iddi W.K. Thompson M.C. Donohue Alzheimer’s Disease Neuroimaging Initiative Bayesian latent time joint mixed effect models for multicohort longitudinal data Stat. Methods Med. Res. 2019 28 835 845 29168432
B. Post J.D. Speelman R.J. Haan on behalf of the CARPA-Study Group Clinical heterogeneity in newly diagnosed Parkinson’s disease J. Neurol. 2008 255 716 722 18344057
D. Belvisi et al. The pathophysiological correlates of Parkinson’s disease clinical subtypes Mov. Disord. 2021 36 370 379 33037859
G. Vivacqua et al. Salivary α‐Synuclein RT‐QuIC Correlates with Disease Severity in de novo Parkinson’s Disease Mov. Disord. 2023 38 153 155 1:CAS:528:DC%2BB38Xis12jsbjN 36259554
C. Zhou et al. Two distinct trajectories of clinical and neurodegeneration events in Parkinson’s disease npj Parkinsons Dis. 2023 9 111 37443179 10344958
R. Erro et al. Clinical clusters and dopaminergic dysfunction in de-novo Parkinson disease Parkinsonism Relat. Disord. 2016 28 137 140 27158121
S.-M. Fereshtehnejad Y. Zeighami A. Dagher R.B. Postuma Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression Brain 2017 140 1959 1976 28549077
Belvisi, D. et al. Risk factors of Parkinson disease: Simultaneous assessment, interactions, and etiologic subtypes. Neurology95, (2020).
M.A. Emon et al. Clustering of Alzheimer’s and Parkinson’s disease based on genetic burden of shared molecular mechanisms Sci. Rep. 2020 10 1:CAS:528:DC%2BB3cXit12hs7rP 33154531 7645798
J. de Jong et al. Deep learning for clustering of multivariate clinical patient trajectories with missing values GigaScience 2019 8 31730697 6857688
B. Mollenhauer et al. Nonmotor and diagnostic findings in subjects with de novo Parkinson disease of the DeNoPa cohort Neurology 2013 81 1226 1234 23997153
M. Banwinkler V. Dzialas The Parkinson’s Progression Markers Initiative M.C. Hoenig T. Van Eimeren Gray matter volume loss in proposed brain‐first and body‐first Parkinson’s disease subtypes Mov. Disord. 2022 37 2066 2074 1:CAS:528:DC%2BB38Xit1emsrzP 35943058
J. Kim et al. Normal ‘heart’ in Parkinson’s disease: is this a distinct clinical phenotype? Eur. J. Neurol. 2017 24 349 356 27888574
A. Stefani et al. Alpha-synuclein seeds in olfactory mucosa of patients with isolated REM sleep behaviour disorder Brain 2021 144 1118 1126 33855335
D. Belvisi et al. The role of frailty in Parkinson’s disease: a cross-sectional study J. Neurol. 2022 269 3006 3014 34791518
S. Hall et al. CSF biomarkers and clinical progression of Parkinson disease Neurology 2015 84 57 63 1:CAS:528:DC%2BC2MXislWnuw%3D%3D 25411441 4336091
Y. Stern Cognitive reserve in ageing and Alzheimer’s disease Lancet Neurol. 2012 11 1006 1012 23079557 3507991
S.-M. Fereshtehnejad R.B. Postuma Subtypes of Parkinson’s disease: what do they tell us about disease progression? Curr. Neurol. Neurosci. Rep. 2017 17 28324303
V. Kotagal Is PIGD a legitimate motor subtype in Parkinson disease? Ann. Clin. Transl. Neurol. 2016 3 473 477 27547776 4892002
J.G. Nutt Motor subtype in Parkinson’s disease: Different disorders or different stages of disease?: Motor Subtypes of PD Mov. Disord. 2016 31 957 961 27226220
T.C. Vu J.G. Nutt N.H.G. Holford Progression of motor and nonmotor features of Parkinson’s disease and their response to treatment Brit J. Clin. Pharma 2012 74 267 283
G. Alves J.P. Larsen M. Emre T. Wentzel-Larsen D. Aarsland Changes in motor subtype and risk for incident dementia in Parkinson’s disease Mov. Disord. 2006 21 1123 1130 16637023
H. Fröhlich et al. Leveraging the potential of digital technology for better individualized treatment of Parkinson’s disease Front. Neurol. 2022 13 788427 35295840 8918525
L. Kuramoto et al. The nature of progression in Parkinson’s Disease: An application of non-linear, multivariate, longitudinal random effects modelling PLoS ONE 2013 8 e76595 1:CAS:528:DC%2BC3sXhs1ymsL%2FJ 24204641 3799835
M.K. Just et al. Alpha-Synuclein strain variability in body-first and brain-first Synucleinopathies Front. Aging Neurosci. 2022 14 907293 1:CAS:528:DC%2BB38Xit12ksLzE 35693346 9178288
J. Huang Y. Cheng C. Li H. Shang Genetic heterogeneity on sleep disorders in Parkinson’s disease: a systematic review and meta-analysis Transl. Neurodegener. 2022 11 21 1:CAS:528:DC%2BB38XhsF2rt77K 35395825 8991652
L. Krohn et al. GBA variants in REM sleep behavior disorder: A multicenter study Neurology 2020 95 e1008 e1016 1:CAS:528:DC%2BB3cXhs1OqsLzN 32591474 7668554
M. Zimmermann et al. Patient’s perception: shorter and more severe prodromal phase in GBA ‐associated PD Eur. J. Neurol. 2019 26 694 698 1:STN:280:DC%2BB3c7otVensg%3D%3D 30107068
C. Gaig et al. Nonmotor symptoms in LRRK2 G2019S associated Parkinson’s disease PLoS ONE 2014 9 e108982 25330404 4201457
M.C. Hoenig V. Dzialas A. Drzezga T. Van Eimeren The concept of motor reserve in Parkinson’s disease: new wine in old bottles? Mov. Disord. 2023 38 16 20 36345092
G. Hipp et al. The Luxembourg Parkinson’s Study: A comprehensive approach for stratification and early diagnosis Front Aging Neurosci. 2018 10 326 30420802 6216083
Donohue, M. mdonohue / ltjmm — Bitbucket. https://bitbucket.org/mdonohue/ltjmm/src/master/ (2017).
Carpenter, B. et al. Stan: A Probabilistic Programming Language. J. Stat. Soft. 76, (2017).
R. Tibshirani G. Walther Cluster validation by prediction strength J. Comput. Graph. Stat. 2005 14 511 528
Y. Benjamini Y. Hochberg Controlling the false discovery rate: a practical and powerful approach to multiple testing J. R. Stat. Soc.: Ser. B (Methodol.) 1995 57 289 300
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft. 67, (2015).
Christensen, R. H. B. ordinal—Regression Models for Ordinal Data. (2022).
S. Balduzzi G. Rücker G. Schwarzer How to perform a meta-analysis with R: a practical tutorial Evid. Based Ment. Health 2019 22 153 160 31563865 10231495
C. Davidson-Pilon Lifelines: survival analysis in Python JOSS 2019 4 1317
J. Klucken et al. Unbiased and mobile gait analysis detects motor impairment in Parkinson’s disease PLoS ONE 2013 8 e56956 1:CAS:528:DC%2BC3sXjsF2jsrk%3D 23431395 3576377
Biggs, J. factor-analyzer. A Factor Analysis tool written in Python.
R. Vallat Pingouin: statistics in Python JOSS 2018 3 1026
Seabold, S. & Perktold, J. statsmodels: Econometric and statistical modeling with python. in 9th Python in Science Conference, (2010).
L. Breiman Random forests Mach. Learn. 2001 45 5 32
Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (ACM, San Francisco California USA, 2016). https://doi.org/10.1145/2939672.2939785.
F. Pedregosa et al. Scikit-learn: Machine learning in Python J. Mach. Learn. Res. 2011 12 2825 2830
M.C. Ard S.D. Edland Power calculations for clinical trials in Alzheimer’s disease JAD 2011 26 369 377 21971476
S. Iddi M.C. Donohue Power and sample size for longitudinal models in R - The longpower package and shiny app R. J. 2022 14 264 282