Article (Périodiques scientifiques)
Fault diagnosis and self-healing for smart manufacturing: a review
ALDRINI, Joma; CHIHI, Ines; Sidhom, Lilia
2023In Journal of Intelligent Manufacturing
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
s10845-023-02165-6 (9).pdf
Postprint Éditeur (2.93 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Fault detection; Fault diagnosis; Fault-tolerant control; Self-healing; Smart manufacturing; Conceptual model
Résumé :
[en] Manufacturing systems are becoming more sophisticated and expensive, particularly with the development of the intelligent industry. The complexity of the architecture and concept of Smart Manufacturing (SM) makes it vulnerable to several faults and failures that impact the entire behavior of the manufacturing system. It is crucial to find and detect any potential anomalies and faults as soon as possible because of the low tolerance for performance deterioration, productivity decline, and safety issues. To overcome these issues, a variety of approaches exist in the literature. However, the multitude of techniques make it difficult to choose the appropriate method in relation to a given context. This paper proposes a new architecture for a conceptual model of intelligent fault diagnosis and self-healing for smart manufacturing systems. Based on this architecture, a review method for the different approaches, sub-approaches and methods used to develop a Fault Detection and Diagnosis (FDD) and Self-Healing-Fault-Tolerant (SH-FT) strategy dedicated to smart manufacturing is defined. Moreover, this paper reviews and analyzes more than 256 scientific articles on fault diagnosis and self-healing approaches and their applications in SM in the last decade. Finally, promising research directions in the field of resilient smart manufacturing are highlighted.
Précision sur le type de document :
Compte rendu
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
ALDRINI, Joma   ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
CHIHI, Ines ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Sidhom, Lilia;  Mechanical Department, National School of Engineering of Bizerte, University of Carthage, Carthage, Tunisia ; LAPER, Faculty of Sciences, El Manar University, Tunis, Tunisia
 Ces auteurs ont contribué de façon équivalente à la publication.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Fault diagnosis and self-healing for smart manufacturing: a review
Date de publication/diffusion :
06 juillet 2023
Titre du périodique :
Journal of Intelligent Manufacturing
ISSN :
0956-5515
eISSN :
1572-8145
Maison d'édition :
Springer
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 06 avril 2024

Statistiques


Nombre de vues
282 (dont 12 Unilu)
Nombre de téléchargements
100 (dont 3 Unilu)

citations Scopus®
 
60
citations Scopus®
sans auto-citations
54
citations OpenAlex
 
64
citations WoS
 
43

Bibliographie


Publications similaires



Contacter ORBilu