Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
SepicNet: Sharp Edges Recovery by Parametric Inference of Curves in 3D Shapes
CHERENKOVA, Kseniya; DUPONT, Elona Marcelle Eugénie; KACEM, Anis et al.
2023In Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
Peer reviewed
 

Documents


Texte intégral
SepicNet_Sharp_Edges_Recovery_by_Parametric_Infere.pdf
Preprint Auteur (6.57 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
3-d scans; 3-D shape; 3D models; 3d-modeling; 3D-scanners; 3D-scanning; End to end; Parametric inference; Parametrizations; Sharp edges; Computer Vision and Pattern Recognition; Electrical and Electronic Engineering
Résumé :
[en] 3D scanning as a technique to digitize objects in reality and create their 3D models, is used in many fields and areas. Though the quality of 3D scans depends on the technical characteristics of the 3D scanner, the common drawback is the smoothing of fine details, or the edges of an object. We introduce SepicNet, a novel deep network for the detection and parametrization of sharp edges in 3D shapes as primitive curves. To make the network end-to-end trainable, we formulate the curve fitting in a differentiable manner. We develop an adaptive point cloud sampling technique that captures the sharp features better than uniform sampling. The experiments were conducted on a newly introduced large-scale dataset of 50k 3D scans, where the sharp edge annotations were extracted from their parametric CAD models, and demonstrate significant improvement over state-of-the-art methods.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
CHERENKOVA, Kseniya ;  University of Luxembourg ; Artec 3D
DUPONT, Elona Marcelle Eugénie ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
KACEM, Anis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Arzhannikov, Ilya;  Artec 3D
Gusev, Gleb;  Artec 3D
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
SepicNet: Sharp Edges Recovery by Parametric Inference of Curves in 3D Shapes
Date de publication/diffusion :
22 juin 2023
Nom de la manifestation :
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
Lieu de la manifestation :
Vancouver, Can
Date de la manifestation :
18-06-2023 => 22-06-2023
Titre de l'ouvrage principal :
Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
Maison d'édition :
IEEE Computer Society
ISBN/EAN :
9798350302493
Peer reviewed :
Peer reviewed
Subventionnement (détails) :
The present project is supported by the National Research Fund, Luxembourg under the BRIDGES2021/IS/16849599/FREE-3D and IF/17052459/CASCADES projects, and by Artec 3D.
Disponible sur ORBilu :
depuis le 21 mars 2024

Statistiques


Nombre de vues
86 (dont 2 Unilu)
Nombre de téléchargements
75 (dont 0 Unilu)

citations Scopus®
 
14
citations Scopus®
sans auto-citations
10
citations OpenAlex
 
8

Bibliographie


Publications similaires



Contacter ORBilu