Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Convolutional Autoencoders for Non-Geostationary Satellite Interference Detection
SAIFALDAWLA, Almoatssimbillah; ORTIZ GOMEZ, Flor de Guadalupe; LAGUNAS, Eva et al.
2024In IEEE International Conference on Communications (IEEE ICC)
Peer reviewed Dataset
 

Documents


Texte intégral
Moatssim__ICC__Final.pdf
Preprint Auteur (1.04 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
GSOs; NGSOs; Interference Detection; Satellite Communication; Convolutional Autoencoders (CAEs)
Résumé :
[en] The new wave of mega-constellations in low-earth orbits (LEOs), which occupy frequency bands that are also used by legacy geostationary orbit satellites (GSOs), will eventually result in increased interference events. In this paper, we explore the application of unsupervised deep learning models, specifically convolutional autoencoders (CAEs), for detecting non-Geostationary Orbit Satellite (NGSO) interference in GSO ground stations (GGS). We propose and evaluate two DL models, the CAE1D model handling amplitude values as 1D data, and the CAE2D model handling In-phase/Quadrature (IQ) samples as 2D data. Through rigorous experimentation, we examine the models' performance against traditional energy detector (ED) methods, employing single-model (SM) and multi-models (MMs) approaches for training the models. Our findings reveal that DL models, particularly under the MMs approach, significantly outperform conventional methods with up to 11% in the probability of detecting interference, demonstrating the potential of advanced machine learning techniques to improve the reliability of satellite communication systems, especially for such fastvarying interference environments (LEO mobility), where only GSO interference-free signals are needed for training the models.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM - Signal Processing & Communications
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SAIFALDAWLA, Almoatssimbillah  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
ORTIZ GOMEZ, Flor de Guadalupe  ;  University of Luxembourg
LAGUNAS, Eva  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Convolutional Autoencoders for Non-Geostationary Satellite Interference Detection
Date de publication/diffusion :
12 août 2024
Nom de la manifestation :
IEEE International Conference on Communications (IEEE ICC)
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Denver, Etats-Unis - Colorado
Date de la manifestation :
9-13 June 2024
Manifestation à portée :
International
Titre de l'ouvrage principal :
IEEE International Conference on Communications (IEEE ICC)
Maison d'édition :
IEEE
Pagination :
1334-1339
Peer reviewed :
Peer reviewed
Projet FnR :
FNR16193290 - Leveraging Artificial Intelligence To Empower The Next Generation Of Satellite Communications, 2021 (01/09/2022-31/08/2025) - Eva Lagunas
Intitulé du projet de recherche :
U-AGR-7111 - C21/IS/16193290/SmartSpace - LAGUNAS Eva
Organisme subsidiant :
FNR - Luxembourg National Research Fund
N° du Fonds :
C21/IS/16193290
Subventionnement (détails) :
This work is financially supported by the Luxembourg National Research Fund (FNR) under the project SmartSpace (C21/IS/16193290)
Jeu de données :
NGSO to GSO’s Users Interference

Dataset Description: Time series of received signal (time and frequency domain)

Commentaire :
This dataset has been used in this work (please cite this reference in your work if you make use of this dataset): A. Saifaldawla, F. Ortiz, E. Lagunas, A. B. M. Adam and S. Chatzinotas, “GenAI-Based Models for NGSO Satellites Interference Detection,” in IEEE Transactions on Machine Learning in Communications and Networking, vol. 2, pp. 904-924, 2024, doi: 10.1109/TMLCN.2024.3418933.
Disponible sur ORBilu :
depuis le 19 mars 2024

Statistiques


Nombre de vues
252 (dont 61 Unilu)
Nombre de téléchargements
212 (dont 28 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
3
OpenCitations
 
0
citations OpenAlex
 
3

Bibliographie


Publications similaires



Contacter ORBilu