Unpublished conference/Abstract (Scientific congresses, symposiums and conference proceedings)
Mastering Computer Vision Inference Frameworks
POCHELU, Pierrick; CASTRO LOPEZ, Oscar Jesus
2024ICPE 2024
Peer reviewed Dataset
 

Files


Full Text
ICPE_Inference_benchmark_2-2.pdf
Author preprint (1.89 MB) Creative Commons License - Attribution, Non-Commercial, No Derivative
(accepted for publication)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
software performance; neural network; inference
Abstract :
[en] In this paper, we present a comprehensive empirical study to evaluate four prominent Computer Vision inference frameworks. Our goal is to shed light on their strengths and weaknesses and provide valuable insights into the challenges of selecting the right inference framework for diverse situations. Additionally, we discuss the potential room for improvement to accelerate inference computing efficiency.
Disciplines :
Computer science
Author, co-author :
POCHELU, Pierrick  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > HPC Platform
CASTRO LOPEZ, Oscar Jesus  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
External co-authors :
no
Language :
English
Title :
Mastering Computer Vision Inference Frameworks
Publication date :
07 May 2024
Number of pages :
6
Event name :
ICPE 2024
Event organizer :
Imperial College London
Event place :
London, United Kingdom
Event date :
7-11 may 2024
Audience :
International
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Development Goals :
9. Industry, innovation and infrastructure
Available on ORBilu :
since 15 March 2024

Statistics


Number of views
168 (23 by Unilu)
Number of downloads
156 (9 by Unilu)

OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBilu