aging and retirement in Europe; alignment optimization; depression; exact or approximate measurement equivalence; mental health policy; multigroup confirmatory factor analysis; older populations; survey on health
Abstract :
[en] Most of the countries in Europe are experiencing a rapid aging of their populations and with this an increase in mental health challenges due to aging. Comparative research may help countries to assess the promotion of healthy aging in general, and mentally healthy aging in particular, and explore ways for adapting mental health policy measures. However, the comparative study of mental health indicators requires that the groups understand the survey questions inquiring about their mental health in the same way and display similar response patterns. Otherwise, observed differences in perceived mental health may not reflect true differences but rather cultural bias in the health measures. To date, research on cross-country equivalence of depression measures among older populations has received very limited attention. Thus, there is a growing need for the cross-country validation of existing depression measures using samples of the older population and establishing measurement equivalence of the assessment tools. Indeed, insights on mental health outcomes and how they compare across societies is paramount to inform policy makers seeking to improve mental health conditions of the populations. This study, therefore, aims to examine measurement equivalence of self-reported depressive symptoms among older populations in 17 European countries and Israel. The data for the current analysis are from the sixth wave (2015) of the Survey on Health, Ageing and Retirement in Europe (SHARE) and consist of the population of respondents 50 years of age and older. The measurement of depression is based on the EURO-D scale, which was developed by a European consortium. It identifies existing depressive symptoms and consists of the 12 items: depression, pessimism, suicidality, guilt, sleep, interest, irritability, appetite, fatigue, concentration, enjoyment, and tearfulness. We examine the cross-country comparability of these data by testing for measurement equivalence using multigroup confirmatory factor analysis (MGCFA) and alignment. Our findings reveal partial equivalence thus allowing us to draw meaningful conclusions on similarities and differences among the older population across 18 countries on the EURO-D measure of depression. Findings are discussed in light of policy implications for universal access to mental health care across countries.
Disciplines :
Sociology & social sciences
Author, co-author :
MASKILEYSON, Dina ✱; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Social Sciences (DSOC) > Political Science ; Faculty of Management, Economics and Social Sciences, Institute of Sociology and Social Psychology, University of Cologne, Cologne, Germany
Seddig, Daniel ✱; Faculty of Management, Economics and Social Sciences, Institute of Sociology and Social Psychology, University of Cologne, Cologne, Germany
Davidov, Eldad ✱; Faculty of Management, Economics and Social Sciences, Institute of Sociology and Social Psychology, University of Cologne, Cologne, Germany ; Department of Sociology and URPP Social Networks, University of Zurich, Zürich, Switzerland ; The Minerva Center on Intersectionality in Aging, Haifa, Israel
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
The EURO-D Measure of Depressive Symptoms in the Aging Population: Comparability Across European Countries and Israel
The authors would like to thank Lisa Trierweiler for the English proof of the manuscript. This paper uses data from SHARE Wave 6 (DOI: 10.6103/ SHARE.w6.710), see Börsch-Supan et al. (2013) for methodological details. The SHARE data collection has been funded by the European Commission through FP5 (QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857, SHARELIFE: CIT4-CT-2006-028812), FP7 (SHARE-PREP: GA N°211909, SHARE-LEAP: GA N°227822, SHARE M4: GA N°261982, DASISH: GA N°283646), Horizon 2020 (SHARE-DEV3: GA N°676536, SHARE-COHESION: GA N°870628, SERISS: GA N°654221, SSHOC: GA N°823782), and by DG Employment, Social Affairs and Inclusion. Additional funding from the German Ministry of Education and Research, the Max Planck Society for the Advancement of Science, the U.S. National Institute on Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C), and from various national funding sources is gratefully acknowledged (see www. share-project.org). ED would like to thank the University of Zurich Research Priority Program “Social Networks” for their financial support during work on this study.
Alonso J. Angermeyer M. C. Bernert S. Bruffaerts R. Brugha T. S. Bryson H. et al. (2004). Prevalence of Mental Disorders in Europe: Results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) Project. Acta Psychiatr. Scand. Suppl. 420, 21–27. 10.1111/j.1600-0047.2004.00327.x
Andreas S. Schulz H. Volkert J. Dehoust M. Sehner S. Suling A. et al. (2017). Prevalence of Mental Disorders in Elderly People: the European MentDis_ICF65+ Study. Br. J. Psychiatry 210 (2), 125–131. 10.1192/bjp.bp.115.180463
Asparouhov T. Muthén B. (2014). Multiple-group Factor Analysis Alignment. Struct. Equation Model. A Multidisciplinary J. 21 (4), 495–508. 10.1080/10705511.2014.919210
Asparouhov T. Muthén B. (2010a). Simple Second Order Chi-Square Correction. Mplus technical Appendix. Retrieved from http://www.statmodel.com/download/WLSMV_new_chi21.pdf.1–8.
Asparouhov T. Muthén B. (2010b). Weighted Least Squares Estimation with Missing Data. Mplus Technical Appendix. Retrieved from https://www.statmodel.com/download/GstrucMissingRevision.pdf.
Barendse M. T. Oort F. J. Timmerman M. E. (2015). Using Exploratory Factor Analysis to Determine the Dimensionality of Discrete Responses. Struct. Equation Model. A Multidisciplinary J. 22 (1), 87–101. 10.1080/10705511.2014.934850
Beard J. R. Officer A. de Carvalho I. A. Sadana R. Pot A. M. Michel J.-P. et al. (2016). The World Report on Ageing and Health: A Policy Framework for Healthy Ageing. Lancet 387 (10033), 2145–2154. 10.1016/S0140-6736(15)00516-4
Belvederi Murri M. Amore M. Respino M. Alexopoulos G. S. (2020). The Symptom Network Structure of Depressive Symptoms in Late-Life: Results from a European Population Study. Mol. Psychiatry 25 (7), 1447–1456. 10.1038/s41380-018-0232-0
Blazer D. G. (2003). Depression in Late Life: Review and Commentary. Journals Gerontol. Ser. A. Biol. Sci. Med. Sci. 58 (3), M249–M265. 10.1093/gerona/58.3.M249
Blazer D. Hughes D. C. George L. K. (1987). The Epidemiology of Depression in an Elderly Community Population. Gerontologist 27 (3), 281–287. 10.1093/geront/27.3.281
Bollen K. Lennox R. (1991). Conventional Wisdom on Measurement: A Structural Equation Perspective. Psychol. Bull. 110 (2), 305–314. 10.1037/0033-2909.110.2.305
Börsch-Supan A. Brandt M. Hunkler C. Kneip T. Korbmacher J. Malter F. et al. (2013). Data Resource Profile: The Survey of Health, Ageing and Retirement in Europe (SHARE). Int. J. Epidemiol. 42, 992–1001. 10.1093/ije/dyt088
Börsch-Supan A. (2019). Survey of Health, Ageing and Retirement in Europe (SHARE) Wave 6. Release version: 7.1.0. SHARE-ERIC. 10.6103/SHARE.w6.710
Brown T. A. (2006). Confirmatory Factor Analysis for Applied Research. New York, NY. Guilford press.
Brown T. A. (2015). Confirmatory Factor Analysis for Applied Research. New York, NY. Guilford publications.
Byrne B. M. Shavelson R. J. Muthén B. (1989). Testing for the Equivalence of Factor Covariance and Mean Structures: The Issue of Partial Measurement Invariance. Psychol. Bull. 105 (3), 456–466. 10.1037/0033-2909.105.3.456
Castro-Costa E. Dewey M. Stewart R. Banerjee S. Huppert F. Mendonca-Lima C. et al. (2008). Ascertaining Late-Life Depressive Symptoms in Europe: an Evaluation of the Survey Version of the EURO-D Scale in 10 Nations. The SHARE Project. Int. J. Methods Psychiatr. Res. 17 (1), 12–29. 10.1002/mpr.236
Castro-Costa E. Dewey M. Stewart R. Banerjee S. Huppert F. Mendonca-Lima C. et al. (2007). Prevalence of Depressive Symptoms and Syndromes in Later Life in Ten European Countries. Br. J. Psychiatry 191 (5), 393–401. 10.1192/bjp.bp.107.036772
Chen F. F. (2008). What Happens if We Compare Chopsticks with forks? the Impact of Making Inappropriate Comparisons in Cross-Cultural Research. J. Personal. Soc. Psychol. 95 (5), 1005–1018. 10.1037/a0013193
Copeland J. R. Beekman A. T. Braam A. W. Dewey M. E. Delespaul P. Fuhrer R. et al. (2004). Depression Among Older People in Europe: the EURODEP Studies. World psychiatry 3 (1), 45–49.
Davidov E. Meuleman B. Cieciuch J. Schmidt P. Billiet J. (2014). Measurement Equivalence in Cross-National Research. Annu. Rev. Sociol. 40, 55–75. 10.1146/annurev-soc-071913-043137
Flake J. K. McCoach D. B. (2018). An Investigation of the Alignment Method with Polytomous Indicators under Conditions of Partial Measurement Invariance. Struct. Equation Model. A Multidisciplinary J. 25 (1), 56–70. 10.1080/10705511.2017.1374187
Malter F. Börsch-Supan A. (Editors) (2017). SHARE Wave 6: Panel Innovations and Collecting Dried Blood Spots (Munich: Munich Center for the Economics of Aging (MEA)).
Forero C. G. Maydeu-Olivares A. Gallardo-Pujol D. (2009). Factor Analysis with Ordinal Indicators: A Monte Carlo Study Comparing DWLS and ULS Estimation. Struct. Equation Model. A Multidisciplinary J. 16 (4), 625–641. 10.1080/10705510903203573
Fried E. I. (2015). Problematic Assumptions Have Slowed Down Depression Research: Why Symptoms, Not Syndromes Are the Way Forward. Front. Psychol. 6, 309. 10.3389/fpsyg.2015.00309
Fried E. I. van Borkulo C. D. Epskamp S. Schoevers R. A. Tuerlinckx F. Borsboom D. (2016). Measuring Depression over Time Or Not? Lack of Unidimensionality and Longitudinal Measurement Invariance in Four Common Rating Scales of Depression. Psychol. Assess. 28 (11), 1354–1367. 10.1037/pas0000275
Graeff-Buhl-Nielsen S. Garcia-Garzon E. Benzerga A. Folke T. Ruggeri K. (2020). Global Mental Health: an Improved Measure of Well-Being in Multiple Languages. Health Qual. Life Outcomes 18 (1), 1–14. 10.1186/s12955-020-01375-3
Guerra M. Ferri C. Llibre J. Prina A. M. Prince M. (2015). Psychometric Properties of EURO-D, a Geriatric Depression Scale: a Cross-Cultural Validation Study. BMC Psychiatry 15 (1), 1–14. 10.1186/s12888-015-0390-4
Harpham T. Reichenheim M. Oser R. Thomas E. Hamid N. Jaswal S. Aidoo M. (2003). Measuring Mental Health in a Cost-Effective Manner. Health Policy Plan. 18 (3), 344–349. 10.1093/heapol/czg041
Chiu H. Shulman K. Ames D. (2017). Mental Health and Illness of the Elderly. Springer Singapore.
Horn J. L. McArdle J. J. (1992). A Practical and Theoretical Guide to Measurement Invariance in Aging Research. Exp. Aging Res. 18 (3-4), 117–144. 10.1080/03610739208253916
Huppert F. A. So T. T. C. (2013). Flourishing across Europe: Application of a New Conceptual Framework for Defining Well-Being. Soc. Indic Res. 110 (3), 837–861. 10.1007/s11205-011-9966-7
Jang Y. Small B. J. Haley W. E. (2001). Cross-cultural Comparability of the Geriatric Depression Scale: Comparison between Older Koreans and Older Americans. Aging Ment. Health 5 (1), 31–37. 10.1080/13607860020020618
Jürges H. (2007). True Health vs Response Styles: Exploring Cross-Country Differences in Self-Reported Health. Health Econ. 16 (2), 163–178. 10.1002/hec.1134
Larraga L. Saz P. Dewey M. E. Marcos G. Lobo A. (2006). Validation of the Spanish Version of the EURO-D Scale: an Instrument for Detecting Depression in Older People. Int. J. Geriat. Psychiatry 21 (12), 1199–1205. 10.1002/gps.1642
Liu Y. Millsap R. E. West S. G. Tein J.-Y. Tanaka R. Grimm K. J. (2017). Testing Measurement Invariance in Longitudinal Data with Ordered-Categorical Measures. Psychol. Methods 22 (3), 486–506. 10.1037/met0000075
Marques A. Gaspar de Matos M. Bordado J. Gouveia É. R. Peralta M. Gomez-Baya D. (2020). Different Levels of Physical Activity and Depression Symptoms Among Older Adults from 18 Countries: A Population-Based Study from the Survey of Health, Ageing and Retirement in Europe (SHARE). Eur. J. Sport Sci. 21, 887–894. 10.1080/17461391.2020.1795273
McNeish D. Wolf M. G. (2020). Thinking Twice about Sum Scores. Behav. Res. 52, 2287–2305. 10.3758/s13428-020-01398-0
Millsap R. E. Yun-Tein J. (2004). Assessing Factorial Invariance in Ordered-Categorical Measures. Multivariate Behav. Res. 39 (3), 479–515. 10.1207/S15327906MBR3903_4
Muthén B. Asparouhov T. (2014). IRT Studies of many Groups: the Alignment Method. Front. Psychol. 5, 978. Available at: https://www.frontiersin.org/article/10.3389/fpsyg.2014.00978.
Muthén B. O. du Toit S. H. C. Spisic D. (1997). Robust Inference Using Weighted Least Squares and Quadratic Estimating Equations in Latent Variable Modeling with Categorical and Continuous Outcomes. Unpublished technical report. Retrieved from https://www.statmodel.com/download/Article_075.pdf.
Muthén L. K. Muthén B. O. (1998-2017). Mplus User’s Guide. 8th ed. Los Angeles, CA: Muthén and Muthén.
Portellano-Ortiz C. Conde-Sala J. L. (2018). Cognition and its Association with the Factors of the EURO‐D: Suffering and Motivation. Findings from SHARE Wave 6. Int. J. Geriatr. Psychiatry 33 (12), 1645–1653. 10.1002/gps.4967
Portellano-Ortiz C. Garre-Olmo J. Calvó-Perxas L. Conde-Sala J. L. (2018). Factor Structure of Depressive Symptoms Using the EURO-D Scale in the Over-50s in Europe. Findings from the SHARE Project. Aging Ment. Health 22 (11), 1477–1485. 10.1080/13607863.2017.1370688
Prince M. J. Beekman A. T. F. Deeg D. J. H. Fuhrer R. Kivela S.-L. Lawlor B. A. et al. (1999a). Depression Symptoms in Late Life Assessed Using the EURO-D Scale. Br. J. Psychiatry 174, 339–345. 10.1192/bjp.174.4.339
Prince M. J. Reischies F. Beekman A. T. F. Fuhrer R. Jonker C. Kivela S.-L. et al. (1999b). Development of the EURO-D Scale - a European Union Initiative to Compare Symptoms of Depression in 14 European Centres. Br. J. Psychiatry 174, 330–338. 10.1192/bjp.174.4.330
Reise S. P. Widaman K. F. Pugh R. H. (1993). Confirmatory Factor Analysis and Item Response Theory: Two Approaches for Exploring Measurement Invariance. Psychol. Bull. 114 (3), 552–566. 10.1037/0033-2909.114.3.552
Richardson R. A. Keyes K. M. Medina J. T. Calvo E. (2020). Sociodemographic Inequalities in Depression Among Older Adults: Cross-Sectional Evidence from 18 Countries. Lancet Psychiatry 7 (8), 673–681. 10.1016/S2215-0366(20)30151-6
Santini Z. I. Jose P. E. Koyanagi A. Meilstrup C. Nielsen L. Madsen K. R. et al. (2020). Formal Social Participation Protects Physical Health through Enhanced Mental Health: A Longitudinal Mediation Analysis Using Three Consecutive Waves of the Survey of Health, Ageing and Retirement in Europe (SHARE). Soc. Sci. Med. 251, 112906. 10.1016/j.socscimed.2020.112906
Sass D. A. Schmitt T. A. (2010). A Comparative Investigation of Rotation Criteria within Exploratory Factor Analysis. Multivariate Behav. Res. 45 (1), 73–103. 10.1080/00273170903504810
Steinmetz H. (2013). Analyzing Observed Composite Differences Across Groups. Methodology 9 (1), 1–12. 10.1027/1614-2241/a000049
Svetina D. Rutkowski L. Rutkowski D. (2020). Multiple-group Invariance with Categorical Outcomes Using Updated Guidelines: An Illustration Using Mplus and the lavaan/semTools Packages. Struct. Equation Model. A Multidisciplinary J. 27 (1), 111–130. 10.1080/10705511.2019.1602776
Vandenberg R. J. Lance C. E. (2000). A Review and Synthesis of the Measurement Invariance Literature: Suggestions, Practices, and Recommendations for Organizational Research. Organ. Res. Methods 3 (1), 4–70. 10.1177/109442810031002
West S. G. Taylor A. B. Wu W. (2012). “Model Fit and Model Selection in Structural Equation Modeling,” in Handbook of Structural Equation Modeling. Editor Hoyle R. H. (New York, NY: The Guilford Press), 209–231.
Worthington R. L. Whittaker T. A. (2006). Scale Development Research. Couns. Psychol. 34 (6), 806–838. 10.1177/0011000006288127
Wu H. Estabrook R. (2016). Identification of Confirmatory Factor Analysis Models of Different Levels of Invariance for Ordered Categorical Outcomes. Psychometrika 81 (4), 1014–1045. 10.1007/s11336-016-9506-0