Article (Périodiques scientifiques)
Towards interactive explanation-based nutrition virtual coaching systems.
Buzcu, Berk; Tessa, Melissa; TCHAPPI HAMAN, Igor et al.
2024In Autonomous Agents and Multi-Agent Systems, 38 (1), p. 5
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
s10458-023-09634-5.pdf
Postprint Auteur (3.98 MB) Licence Creative Commons - Transfert dans le Domaine Public
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Explainable AI; Interactive; Nutrition virtual coach; Recommender systems; Argumentation systems; Data driven; Healthy lifestyles; Human machine interaction; Mechanistics; User engagement; Users' acceptance; Artificial Intelligence
Résumé :
[en] The awareness about healthy lifestyles is increasing, opening to personalized intelligent health coaching applications. A demand for more than mere suggestions and mechanistic interactions has driven attention to nutrition virtual coaching systems (NVC) as a bridge between human-machine interaction and recommender, informative, persuasive, and argumentation systems. NVC can rely on data-driven opaque mechanisms. Therefore, it is crucial to enable NVC to explain their doing (i.e., engaging the user in discussions (via arguments) about dietary solutions/alternatives). By doing so, transparency, user acceptance, and engagement are expected to be boosted. This study focuses on NVC agents generating personalized food recommendations based on user-specific factors such as allergies, eating habits, lifestyles, and ingredient preferences. In particular, we propose a user-agent negotiation process entailing run-time feedback mechanisms to react to both recommendations and related explanations. Lastly, the study presents the findings obtained by the experiments conducted with multi-background participants to evaluate the acceptability and effectiveness of the proposed system. The results indicate that most participants value the opportunity to provide feedback and receive explanations for recommendations. Additionally, the users are fond of receiving information tailored to their needs. Furthermore, our interactive recommendation system performed better than the corresponding traditional recommendation system in terms of effectiveness regarding the number of agreements and rounds.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Buzcu, Berk;  Computer Science, Özyeğin University, Istanbul, Turkey ; University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sierre, Switzerland
Tessa, Melissa;  Computer Science, High National School of Computer Science ESI ex-INI, Algiers, Algeria
TCHAPPI HAMAN, Igor  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX
NAJJAR, Amro ;  University of Luxembourg ; Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
HULSTIJN, Joris  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Calvaresi, Davide;  University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sierre, Switzerland
Aydoğan, Reyhan;  Computer Science, Özyeğin University, Istanbul, Turkey ; Interactive Intelligence, Delft University of Technology, Delft, The Netherlands ; University of Alcala, Alcala de Henares, Spain
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Towards interactive explanation-based nutrition virtual coaching systems.
Date de publication/diffusion :
2024
Titre du périodique :
Autonomous Agents and Multi-Agent Systems
ISSN :
1387-2532
eISSN :
1573-7454
Maison d'édition :
Springer, Etats-Unis
Volume/Tome :
38
Fascicule/Saison :
1
Pagination :
5
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
CHIST-ERA
Fonds National de la Recherche Luxembourg
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
University of Applied Sciences and Arts Western Switzerland
Subventionnement (détails) :
This work has been supported by the CHIST-ERA grant CHIST-ERA-19-XAI-005, and by the Swiss National Science Foundation (G.A. 20CH21_195530), the Italian Ministry for Universities and Research, the Luxembourg National Research Fund (G.A. INTER/CHIST/19/14589586), the Scientific and Research Council of Turkey (TÜBİTAK, G.A. 120N680).Open access funding provided by University of Applied Sciences and Arts Western Switzerland (HES-SO). This work has been supported by the CHIST-ERA grant CHIST-ERA-19-XAI-005, and by the Swiss National Science Foundation (G.A. 20CH21_195530), the Italian Ministry for Universities and Research, the Luxembourg National Research Fund (G.A. INTER/CHIST/19/14589586), the Scientific and Research Council of Turkey (TÜBİTAK, G.A. 120N680).
Disponible sur ORBilu :
depuis le 06 mars 2024

Statistiques


Nombre de vues
72 (dont 4 Unilu)
Nombre de téléchargements
37 (dont 1 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
3
citations OpenAlex
 
5
citations WoS
 
5

Bibliographie


Publications similaires



Contacter ORBilu