Mobility Simulation; Agent-Based Modelling; Population Synthesis; Agent-Based Simulation
Abstract :
[en] This paper presents a comprehensive and innovative evaluation framework for identifying a reliable population synthesis for agent-based modeling - transportation-oriented simulations (ABM - TOS). We show, via this framework and different metrics for the analysis of the generated distribution of the individuals’ attributes, that population synthesizers may fail to correctly replicate the real population heterogeneity due to diverse control variables, data limitations, and postsimulation computation of certain parameter distributions. To show these shortcomings, the authors propose a systematic classification of different types of distributions crucial for mobility simulations. The proposed framework aims to provide a comprehensive overview of the population and serve as a rapid ’debugging’ tool to identify and rectify any flaws in a specific population during the calibration of the activity-based mobility simulation models. To prove the effectiveness of this framework, we applied it to synthetic populations generated through MOBIUS, a newly developed synthetic population generator, which in this case was employed to create different variants of the Luxembourg population (1%, 10%, 30%). The application of our framework to these populations not only provided an effective method for assessing their goodness of fit, but also helped highlight the distributions that are most critical to the successful implementation of the methodology.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
BIGI, Federico ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Author, Corresponding; Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-Sur-Alzette, Luxembourg
Rashidi, Taha; University of New South Wales (UNSW Sydney), Sydney, Australia
VITI, Francesco ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
External co-authors :
yes
Language :
English
Title :
Synthetic Population: A Reliable Framework for Analysis for Agent-Based Modeling in Mobility
Publication date :
April 2024
Journal title :
Transportation Research Recordv: Journal of the Transportation Research Board
ISSN :
0361-1981
eISSN :
2169-4052
Publisher :
U.S. National Research Council, Washington, United States - District of Columbia
Hörl S. Balac M. Synthetic Population and Travel Demand for Paris and Île-de-France Based on Open and Publicly Available Data. Transportation Research Part C: Emerging Technologies, Vol. 130, 2021, p. 103291. https://doi.org/10.1016/j.trc.2021.103291; https://www.sciencedirect.com/science/article/pii/S0968090X21003016.
Anderson A. van Der Merwe A. Time-Driven Activity-Based Costing Related to Digital Twinning in Additive Manufacturing. South African Journal of Industrial Engineering, Vol. 32, 2021, pp. 37–43. http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2224-78902021000100005&nrm=iso.
Coelho F. Relvas S. Barbosa-Póvoa A. Simulation Based Decision Support Tool for In-house Logistics: The Basis for a Digital Twin. Computers Industrial Engineering, Vol. 153, 2021, p. 107094. https://doi.org/10.1016/j.cie.2020.107094; https://www.sciencedirect.com/science/article/pii/S0360835220307646.
O’Donoghue C. Morrissey K. Lennon J. Spatial Microsimulation Modelling: A Review of Applications and Methodological Choices. International Journal of Microsimulation, Vol. 7, 2013, pp. 26–75. https://doi.org/10.34196/ijm.00093.
Müller K. Axhausen K. Population Synthesis for Microsimulation: State of the Art. Arbeitsberichte Verkehrs-und Raumplanung, Vol. 638, 2010. https://doi.org/10.3929/ethz-a-006127782.
Farooq B. Bierlaire M. Hurtubia R. Flötteröd G. Simulation Based Population Synthesis. Transportation Research Part B: Methodological, Vol. 58, 2013, pp. 243–263. https://doi.org/10.1016/j.trb.2013.09.012; https://www.scopus.com/inward/record.uri?eid=2-s2.0-84885798000&doi=10.1016%2fj.trb.2013.09.012&partnerID=40&md5=96cd6174f3d8a1865481e53efb034a1d.
Tanton R. A Review of Spatial Microsimulation Methods. International Journal of Microsimulation, Vol. 7, 2013, pp. 4–25. https://doi.org/10.34196/ijm.00092.
Garrido S. Borysov S. S. Pereira F. C. Rich J. Prediction of Rare Feature Combinations in Population Synthesis: Application of Deep Generative Modelling. Transportation Research Part C: Emerging Technologies, Vol. 120, 2020, p. 102787. https://doi.org/10.1016/j.trc.2020.102787.
Bigi F. Schwemmle N. Viti F. Evaluating the Impact of Free Public Transport using Agent-Based Modeling: The Case-Study of Luxembourg. Proc., 11th Symposium of the European Association for Research in Transportation (hEART2023), ETH Zurich, 2023.
Deming W. E. Stephan F. F. On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals Are Known. The Annals of Mathematical Statistics, Vol. 11, No. 4, 1940, pp. 427–444. https://doi.org/10.1214/aoms/1177731829.
Arentze T. Timmermans H. Hofman F. Creating Synthetic Household Populations: Problems and Approach. Transportation Research Record: Journal of the Transportation Research Board, 2007. 2014: 85–91.
Durán-Heras A. García-Gutiérrez I. Castilla-Alcalá G. Comparison of Iterative Proportional Fitting and Simulated Annealing as Synthetic Population Generation Techniques: Importance of the Rounding Method. Computers, Environment and Urban Systems, Vol. 68, 2018, pp. 78–88. https://doi.org/10.1016/j.compenvurbsys.2017.11.001; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044376181&doi=10.1016%2fj.compenvurbsys.2017.11.001&partnerID=40&md5=39410c7c9def8cbd4fff49761c193e19.
Beckman R. J. Baggerly K. A. McKay M. D. Creating Synthetic Baseline Populations. Transportation Research Part A: Policy and Practice, Vol. 30, No. 6, 1996, pp. 415–429. https://doi.org/10.1016/0965-8564(96)00004-3; https://www.sciencedirect.com/science/article/pii/0965856496000043.
Agriesti S. Roncoli C. Nahmias-Biran B.-H. Assignment of a Synthetic Population for Activity-Based Modelling Employing Publicly Available Data. ISPRS International Journal of Geo-Information, Vol. 11, No. 2, 2022, p. 148.
Templ M. Meindl B. Kowarik A. Dupriez O. Simulation of Synthetic Complex Data: The R Package simPop. Journal of Statistical Software, Vol. 79, No. 10, 2017, pp. 1–38. https://doi.org/10.18637/jss.v079.i10; https://www.jstatsoft.org/index.php/jss/article/view/v079i10.
Jain S. Ronald N. Winter S. Creating a Synthetic Population: A Comparison of Tools. Proc., 3rd Conference Transportation Reserch Group, Kolkata, India, 2015.
Tozluoğlu Ç. Dhamal S. Liao Y. Yeh S. Sprei F. Dubhashi D. Marathe M. Barrett C. Synthetic Sweden Mobility (SySMo) Model Documentation. 2022. https://www.researchgate.net/publication/361909397_Synthetic_Sweden_Mobility_SySMo_Model_Documentation.
Geyer C. Introduction to Markov Chain Monte Carlo. In Handbook of Markov Chain Monte Carlo (Brooks S. Gelman A. Jones G. Meng X., eds.), CRC Press, Boca Raton, FL, 2011, pp. 3–48. https://doi.org/10.1201/b10905-2.
Felbermair S. Lammer F. Trausinger-Binder E. Hebenstreit C. Generating Synthetic Population with Activity Chains as Agent-Based Model Input Using Statistical Raster Census Data. Procedia Computer Science, Vol. 170, 2020, pp. 273–280. https://doi.org/10.1016/j.procs.2020.03.040; https://www.sciencedirect.com/science/article/pii/S1877050920304695.
Sun L. Erath A. A Bayesian Network Approach for Population Synthesis. Transportation Research Part C: Emerging Technologies, Vol. 61, 2015, pp. 49–62. https://doi.org/10.1016/j.trc.2015.10.010.
Arkangil E. Yildirimoglu M. Kim J. Prato C. A Deep Learning Framework to Generate Realistic Population and Mobility Data. arXiv Preprint arXiv:2211.07369, 2022.
Berke A. Doorley R. Larson K. Moro E. Generating Synthetic Mobility Data for a Realistic Population with RNNs to Improve Utility and Privacy. Proc., 37th ACM/SIGAPP Symposium on Applied Computing, ACM, New York, 2022. https://doi.org/10.1145/3477314.3507230.
Badu-Marfo G. Farooq B. Paterson Z. Composite Travel Generative Adversarial Networks for Tabular and Sequential Population Synthesis. IEEE Transactions on Intelligent Transportation Systems, Vol. 23, No. 10, 2022, pp. 17976–17985.
Horni A. Nagel K. Axhausen K. The Multi-Agent Transport Simulation MATSim. Ubiquity Press, London, 2016. https://doi.org/10.5334/baw.
Hanson S. Hanson P. The Travel-Activity Patterns of Urban Residents: Dimensions and Relationships to Sociodemographic Characteristics. Economic Geography, Vol. 57, No. 4, 1981, pp. 332–347. https://doi.org/10.2307/144213; https://www.tandfonline.com/doi/abs/10.2307/144213; https://www.tandfonline.com/doi/pdf/10.2307/144213.
Hanson S. The Determinants of Daily Travel-Activity Patterns: Relative Location and Sociodemographic Factors. Urban Geography, Vol. 3, No. 3, 1982, pp. 179–202. https://doi.org/10.2747/0272-3638.3.3.179.
Bradley M. Vovsha P. A Model for Joint Choice of Daily Activity Pattern Types of Household Members. Transportation, Vol. 32, 2005, pp. 545–571. https://doi.org/10.1007/s11116-005-5761-0.
Hu Y. van Wee B. Ettema D. Intra-household Decisions and the Impact of the Built Environment on Activity-Travel Behavior: A Review of the Literature. Journal of Transport Geography, Vol. 106, 2023, p. 103485. https://doi.org/10.1016/j.jtrangeo.2022.103485; https://www.sciencedirect.com/science/article/pii/S0966692322002083.
Scheffer A. Connors R. Viti F. Trip Chaining Impact on Within-Day Mode Choice Dynamics: Evidences from a Multi-Day Travel Survey. Transportation Research Procedia, Vol. 52, 2021, pp. 684–691. https://doi.org/10.1016/j.trpro.2021.01.082; https://www.sciencedirect.com/science/article/pii/S2352146521001289.
Kitsos C. Toulias T. Hellinger Distance Between Generalized Normal Distributions. British Journal of Mathematics Computer Science, Vol. 21, 2017, pp. 1–16. https://doi.org/10.9734/BJMCS/2017/32229.
Mosquera L. El Emam K. Ding L. Sharma V. Zhang X. El Kababji S. Carvalho C., et al. A Method for Generating Synthetic Longitudinal Health Data. BMC Medical Research Methodology, Vol. 23, 2023, pp. 1–21. https://doi.org/10.1186/s12874-023-01869-w.
Kamble V. Deshmukh S. Comparision Between Accuracy and MSE, RMSE by Using Proposed Method with Imputation Technique. Oriental Journal of Computer Science and Technology, Vol. 10, 2017, pp. 773–779. https://doi.org/10.13005/ojcst/10.04.11.
Hoyos-Osorio J. Sanchez Giraldo L. The Representation Jensen-Shannon Divergence. arXiv Preprint arXiv:2305.16446, 2023.
Joyce J. Kullback-Leibler Divergence. In International Encyclopedia of Statistical Science, Springer, Berlin, Heidelberg, 2011, pp. 720–722. https://doi.org/10.1007/978-3-642-04898-2_327.
Chen Y. Adding a Comprehensive Calibration Methodology to an Agent-Based Transportation Simulation. PhD thesis. 2012. https://doi.org/10.14279/depositonce-3523.