Article (Périodiques scientifiques)
Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework
FELTEN, Florian; TALBI, El-Ghazali; DANOY, Grégoire
2024In Journal of Artificial Intelligence Research, 79, p. 679-723
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
JAIR___Decomposition_based_Multi_Objective_Reinforcement_Learning (36).pdf
Postprint Auteur (7.29 MB) Licence Creative Commons - Transfert dans le Domaine Public
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Artificial Intelligence
Résumé :
[en] Multi-objective reinforcement learning (MORL) extends traditional RL by seeking policies making different compromises among conflicting objectives. The recent surge of interest in MORL has led to diverse studies and solving methods, often drawing from existing knowledge in multi-objective optimization based on decomposition (MOO/D). Yet, a clear categorization based on both RL and MOO/D is lacking in the existing literature. Consequently, MORL researchers face difficulties when trying to classify contributions within a broader context due to the absence of a standardized taxonomy. To tackle such an issue, this paper introduces multi-objective reinforcement learning based on decomposition (MORL/D), a novel methodology bridging the literature of RL and MOO. A comprehensive taxonomy for MORL/D is presented, providing a structured foundation for categorizing existing and potential MORL works. The introduced taxonomy is then used to scrutinize MORL research, enhancing clarity and conciseness through well-defined categorization. Moreover, a flexible framework derived from the taxonomy is introduced. This framework accommodates diverse instantiations using tools from both RL and MOO/D. Its versatility is demonstrated by implementing it in different configurations and assessing it on contrasting benchmark problems. Results indicate MORL/D instantiations achieve comparable performance to current state-of-the-art approaches on the studied problems. By presenting the taxonomy and framework, this paper offers a comprehensive perspective and a unified vocabulary for MORL. This not only facilitates the identification of algorithmic contributions but also lays the groundwork for novel research avenues in MORL.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
FELTEN, Florian  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
TALBI, El-Ghazali ;  University of Luxembourg
DANOY, Grégoire  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework
Date de publication/diffusion :
26 février 2024
Titre du périodique :
Journal of Artificial Intelligence Research
ISSN :
1076-9757
eISSN :
1943-5037
Maison d'édition :
AI Access Foundation
Volume/Tome :
79
Pagination :
679-723
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR14762457 - Automating The Design Of Autonomous Robot Swarms, 2020 (01/05/2021-30/04/2024) - Gregoire Danoy
Intitulé du projet de recherche :
R-AGR-3933 - C20/IS/14762457/ADARS - DANOY Grégoire
Disponible sur ORBilu :
depuis le 29 février 2024

Statistiques


Nombre de vues
197 (dont 13 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
17
citations Scopus®
sans auto-citations
17
citations OpenAlex
 
13

Bibliographie


Publications similaires



Contacter ORBilu