Gas separation equipment setup; Gas separation membranes; Photoresponsive mechanisms; Photoresponsive metal-organic frameworks; Photoresponsive molecules; Gas separation membrane; Gas separations; Metalorganic frameworks (MOFs); Photo-responsive; Photoresponsive mechanism; Photoresponsive metal-organic framework; Photoresponsive molecule; Separation equipment; Process Chemistry and Technology; Polymers and Plastics; Organic Chemistry
Résumé :
[en] Stimuli-responsive materials, referred to as "smart"or "intelligent"materials, have gained significant attention in the separation fields, including gas separation. Among a variety of available stimuli, the use of light as a nondestructive, cost-efficient, chemical-reagent-free stimulus with a relatively fast response is very promising. Herein, we summarize and highlight the approaches applied for the synthesis of photoresponsive organic polymeric membranes, inorganic metal-organic framework thin films, and inorganic-organic mixed-matrix membranes. We discuss the application of these materials for gas separation and provide selected state-of-the-art examples from recently conducted studies. Additionally, the photoresponsive gas separation membrane testing cell plays a crucial role in evaluating and comparing the performance of photoresponsive membranes in the gas separation process. Therefore, we review the development of photoresponsive gas separation membrane testing cells along with the ascribed drawbacks and limitations. A third generation testing system designed to highlight test accuracy is proposed and discussed.
Disciplines :
Ingénierie chimique
Auteur, co-auteur :
GAFIULLINA, Anastasiia ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Department of Separation Science, Lut School of Engineering Science, Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
LADEWIG, Bradley Paul ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Zhang, Jinju ; Institute for Micro Process Engineering (IMVT), Department of Chemical and Process Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Photoresponsive Polymer and Polymer Composite Membranes for Gas Separation
Aguilar, M. R.; Román, J. S. Smart Polymers and Their Applications, 2 nd ed.; Elsevier, 2019.
Weh, K.; Noack, M.; Ruhmann, R.; Hoffmann, K.; Toussaint, P.; Caro, J. Modification of the Transport Properties of a Polymethacrylate-Azobenzene Membrane by Photochemical Switching. Chem. Eng. Technol. 1998, 21 (5), 408-412, 10.1002/(SICI)1521-4125(199805)21:5<408::AID-CEAT408>3.0.CO;2-L
Darvishmanesh, S.; Qian, X.; Wickramasinghe, S. R. Responsive membranes for advanced separations. Curr. Opin. Chem. Eng. 2015, 8, 98-104, 10.1016/j.coche.2015.04.002
Purkait, M. K.; Sinha, M. K.; Mondal, P.; Singh, R. Photoresponsive Membranes. Interface Science and Technology; Elsevier, 2018; Vol. 25, pp 115-144.
Bhattacharyya, D.; Schäfer, T. Responsive Membrane and Materials; Wiley, 2013.
Gelebart, A. H.; McBride, M.; Schenning, A. P. H. J.; Bowman, C. N.; Broer, D. J. Photoresponsive Fiber Array: Toward Mimicking the Collective Motion of Cilia for Transport Applications. Adv. Funct. Mater. 2016, 26 (29), 5322-5327, 10.1002/adfm.201601221
Stumpel, J. E.; Broer, D. J.; Schenning, A. P. H. J. Stimuli-responsive photonic polymer coatings. Chem. Commun. 2014, 50, 15839-15848, 10.1039/C4CC05072J
Wagner, N.; Theato, P. Light-induced wettability changes on polymer surfaces. Polymer 2014, 55 (16), 3436-3453, 10.1016/j.polymer.2014.05.033
Zhao, Y. Photocontrollable block copolymer micelles: what can we control?. J. Mater. Chem. 2009, 19 (28), 4887-4895, 10.1039/b819968j
Pantuso, E.; De Filpo, G.; Nicoletta, F. P. Light-Responsive Polymer Membranes. Adv. Opt. Mater. 2019, 7 (16), 1900252, 10.1002/adom.201900252
Danowski, W.; van Leeuwen, T.; Browne, W. R.; Feringa, B. L. Photoresponsive porous materials. Nanoscale Adv. 2021, 3, 24-40, 10.1039/D0NA00647E
Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem. Rev. 2014, 114 (24), 12174-12277, 10.1021/cr500249p
Yokoyama, Y. Fulgides for Memories and Switches. Chem. Rev. 2000, 100 (5), 1717-1740, 10.1021/cr980070c
Kumar, G. S.; Neckers, D. Photochemistry of Azobenzene-Containing Polymers. Chem. Rev. 1989, 89 (8), 1915-1925, 10.1021/cr00098a012
Irie, M.; Kunwatchakun, D. Reversible Photostimulated Dilation of Polyacryl-amide Gels Having Triphenylmethane Leuco Derivatives. Macromolecules 1986, 19 (10), 2476-2480, 10.1021/ma00164a003
Wang, X. Azo Polymers: Synthesis, Functions and Applications; Springer, 2017.
Rau, H. Photoisomerization of Azobenzenes. Photochemistry and Photophysics; CRC Press, 1990; Vol. 2, pp 119-141.
Rau, H. Azo Compounds. Photochromism: Molecules and Systems; Elsevier, 2003; pp 165-192.
Ercole, F.; Davis, T. P.; Evans, R. A. Photo-responsive Systems and Biomaterials: Photochromic Polymers, Light-Triggered Self-Assembly, Surface Modification, Fluorescence Modulation and Beyond. Polym. Chem. 2010, 1, 37-54, 10.1039/B9PY00300B
Fagan, A.; Bartkowski, M.; Giordani, S. Spiropyran-Based Drug Delivery Systems. Front. Chem. 2021, 9, 612, 10.3389/fchem.2021.720087
Eilmes, A. Spiropyran to Merocyanine Conversion: Explicit versus Implicit Solent Modeling. Phys. Chem. A 2013, 117 (12), 2629-2635, 10.1021/jp3117209
Wang, L.; Li, Q. Photochromism into Nanosystems: towards Lighting up the Future Nanoworld. Chem. Soc. Rev. 2018, 47 (3), 1044-1097, 10.1039/C7CS00630F
Hammarson, M.; Nilsson, J. R.; Li, S.; Beke-Somfai, T.; Andréasson, J. Characterization of the Thermal and Photoinduced Reactions of Photochromic Spiropyrans in Aqueous Solution. J. Phys. Chem. B 2013, 117, 13561-13571, 10.1021/jp408781p
Berton, C.; Busiello, D. M.; Zamuner, S.; Solari, E.; Scopelliti, R.; Fadaei-Tirani, F.; Severin, K.; Pezzato, C. Thermodynamics and Kinetics of Protonated Merocyanine Photoacids in Water. Chem. Sci. 2020, 11, 8457-8468, 10.1039/D0SC03152F
Radu, A.; Byrne, R.; Alhashimy, N.; Fusaro, M.; Scarmagnani, S.; Diamond, D. Spiropyran-based Reversible, Light-Modulated Sensing with Reduced Photofatigue. J. Photochem. Photobiol. A: Chem. 2009, 206, 109-115, 10.1016/j.jphotochem.2009.05.022
Hanazawa, M.; Sumiya, R.; Horikawa, Y.; Irie, M. J. Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis (2-methylbenzo[ b]thiophen-3-yl)perfluorocyclocoalkene derivatives. Chem. Soc., Chem. Commun. 1992, 3, 206-207, 10.1039/c39920000206
Fukaminato, T.; Hirose, T.; Doi, T.; Hazama, M.; Matsuda, K.; Irie, M. Molecular Design Strategy toward Diarylethenes that Photoswitch with Visible Light. J. Am. Chem. Soc. 2014, 136 (49), 17145-17154, 10.1021/ja5090749
Maeda, S. Spirooxazines. Organic Photochromic and Thermochromic Compounds; Plenum Publishing, 1999; Vol. 1, p 85.
Chu, N. Y. C. Photochromism of spiroindolinonaphthoxazine. I. Photophysical properties. Can. J. Chem. 1983, 61 (2), 300-305, 10.1139/v83-054
Nicoletta, F. P.; Cupelli, D.; Formoso, P.; De Filpo, G.; Colella, V.; Gugliuzza, A. Light Responsive Polymer Membranes: A Review. Membranes 2012, 2, 134-197, 10.3390/membranes2010134
Bhosale, S. V.; Jani, C. H.; Langford, S. J. Chemistry of Naphthalene Diimides. Chem. Soc. Rev. 2008, 37 (2), 331-342, 10.1039/B615857A
Monk, P. M. S. The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine; Wiley, 1998.
Cardenas-Daw, C.; Kroeger, A.; Schaertl, W.; Froimowicz, P.; Landfester, K. Reversible Photocycloadditions, a Powerful Tool for Tailoring (Nano)Materials. Macromol. Chem. Phys. 2012, 213 (2), 144-156, 10.1002/macp.201100399
O'Donnell, M. Photo-Dimerization of Solid Anthracene. Nature 1968, 218, 460-461, 10.1038/218460b0
Tyer, N. W.; Becker, R. S. Photochromic Spiropyrans. I. Absorption Spectra and Evaluation of the π-electron Orthogonality of the Constituent Halves. J. Am. Chem. Soc. 1970, 92, 1289-1294, 10.1021/ja00708a031
Vlassiouk, I.; Park, C.-D.; Vail, S. A.; Gust, D.; Smirnov, S. Control of Nanopore Wetting by a Photochromic Spiropyran: A Light-Controlled Valve and Electrical Switch. Nano Lett. 2006, 6, 1013-1017, 10.1021/nl060313d
Pimienta, V.; Lavabre, D.; Levy, G.; Samat, A.; Guglielmetti, R.; Micheau, J. C. Kinetic Analysis of Photochromic Systems under Continuous Irradiation. Application to Spiropyrans. J. Phys. Chem. 1996, 100, 4485-4490, 10.1021/jp9531117
Rice, A. M.; Martin, C. R.; Galitskiy, V. A.; Berseneva, A. A.; Leith, G. A.; Shustova, N. B. Photophysics Modulation in Photoswitchable Metal-organic Frameworks. Chem. Rev. 2020, 120 (16), 8790-8813, 10.1021/acs.chemrev.9b00350
Weston, C. E.; Richardson, R. D.; Haycock, P. R.; White, A. J.; Fuchter, M. J. Arylazopyrazoles: Azoheteroarene Photoswitches Offering Quantitative Isomerization and Long Thermal Half-Lives. J. Am. Chem. Soc. 2014, 136 (34), 11878-11881, 10.1021/ja505444d
Van Gembert, B. Benzo and Napthopyrans (Chromenes). Organic Photochromic and Thermochromic Compounds; Plenum Publishing, 1999; Vol. 1, p 111.
Jeong, Y.-C.; Yang, S. I.; Kim, E.; Ahn, K.-H. Development of highly fluorescent photochromic material with high fatigue resistance. Tetrahedron 2006, 62 (25), 5855-5861, 10.1016/j.tet.2006.04.029
Jeong, Y.-C.; Park, D. G.; Lee, I. S.; Yang, S. I.; Ahn, K.-H. Highly fluorescent photochromic diarylethene with an excellent fatigue property. J. Mater. Chem. 2009, 19, 97-103, 10.1039/B814040E
Kalayci, K.; Frisch, H.; Barner-Kowollik, C.; Truong, V. H. Wavelength-Dependent Stiffening of Hydrogel Matrices via Redshifted [2 + 2] Photocycloadditions. Adv. Funct. Mater. 2020, 30 (15), 1908171, 10.1002/adfm.201908171
Baghaffar, G. A.; Asiri, A. M. The Effects of Organic Additives on Photochromism. Part I: the Photochromic Performance of (E)-dicyclopropylmethylene-(2,5-dimethyl-3-furylethylidene)-succinic Anhydride and Ferrocene Containing Dye Doped in PMMA Polymer Film. Pigm. Resin Technol. 2008, 37 (3), 145-150, 10.1108/03699420810870986
Huang, W.; Abukhalil, P. M.; Khan, S. I.; Diaconescu, P. L. Group 3 Metal Stilbene Complexes: Synthesis, Reactivity, and Electronic Structure Studies. Chem. Commun. 2014, 50 (40), 5221-5223, 10.1039/C3CC47505K
Khan, A.; Wang, L.; Yu, H.; Haroon, M.; Ullah, R. S.; Nazir, A.; Elshaarani, T.; Usman, M.; Fahad, S.; Haq, F. Research advances in the synthesis and applications of ferrocene-based electro and photo responsive materials. Appl. Organomet. Chem. 2018, 32 (12), e4575, 10.1002/aoc.4575
Zhang, Z.; Wang, W.; Jin, P.; Xue, J.; Sun, L.; Huang, J.; Zhang, J.; Tian, H. A building-block design for enhanced visible-light switching of diarylethenes. Nat. Commun. 2019, 10, 4232, 10.1038/s41467-019-12302-6
Kamble, A. R.; Patel, C. M.; Murthy, Z. V. P. A review on the recent advances in mixed matrix membranes for gas separation processes. Renew. Sust. Energy Rev. 2021, 145, 111062, 10.1016/j.rser.2021.111062
Qian, Q.; Asinger, P. A.; Lee, M. J.; Han, G.; Mizrahi Rodriguez, K.; Lin, S.; Benedetti, F. M.; Wu, A. X.; Chi, W. S.; Smith, Z. P. MOF-Based Membranes for Gas Separations. Chem. Rev. 2020, 120 (16), 8161-8266, 10.1021/acs.chemrev.0c00119
Zhang, Y.; Feng, X.; Yuan, S.; Zhou, J.; Wang, B. Challenges and recent advances in MOF-polymer composite membranes for gas separation. Inorg. Chem. Front. 2016, 3 (7), 896-909, 10.1039/C6QI00042H
Aroon, M. A.; Ismail, A. F.; Matsuura, T.; Montazer-Rahmati, M. M. Performance Studies of Mixed Matrix Membranes for Gas Separation: A Review. Sep. Purif. Technol. 2010, 75 (3), 229-242, 10.1016/j.seppur.2010.08.023
Becker, D.; Konnertz, N.; Böhning, M.; Schmidt, J.; Thomas, A. Light-Switchable Polymers of Intrinsic Microporosity. Chem. Mater. 2016, 28 (23), 8523-8529, 10.1021/acs.chemmater.6b02619
Ludwanowski, S.; Skarsetz, O.; Creusen, G.; Hoenders, D.; Straub, P.; Walther, A. Wavelength-Gated Adaptation of Hydrogel Properties via Photo-Dynamic Multivalency in Associative Star Polymers. Angew. Chem., Int. Ed. 2021, 60 (19), 4358-4367, 10.1002/anie.202011592
Wandera, D.; Wickramasinghe, S. R.; Husson, S. M. Stimuli-responsive membranes. J. Membr. Sci. 2010, 357 (1-2), 6-35, 10.1016/j.memsci.2010.03.046
Ismail, A. F.; Khulbe, K. C.; Matsuura, T. Gas Separation Membranes. Polymeric and Inorganic; Springer, 2015.
Kameda, M.; Sumaru, K.; Kanamori, T.; Shinbo, T. Photoresponsive Gas Permeability of Azobenzene-Functionalized Glassy Polymer Films. J. Appl. Polym. Sci. 2003, 88 (8), 2068-2072, 10.1002/app.11980
Bujak, K.; Nocon, K.; Jankowski, A.; Wolinska-Grabczyk, A.; Schab-Balcerzak, E.; Janeczek, H.; Konieczkowska, J. Azopolymers with Imide Structures as Light-switchable Membranes in Controlled Gas Separation. Eur. Polym. J. 2019, 118, 186-194, 10.1016/j.eurpolymj.2019.05.051
Nocoń-Szmajda, K.; Jankowski, A.; Wolińska-Grabczyk, A.; Konieczkowska, J. Guest-host and Functionalized Side-chain Azopolyimide Membranes for Controlled Gas Separation. Polymer 2021, 229, 124012, 10.1016/j.polymer.2021.124012
Chen, Z.; Xie, H.-Y.; Li, Y.-J.; Chen, G.-E; Xu, S.-J.; Xu, Z.-J. Smart Light Responsive Polypropylene Membrane Switching Reversibly between Hydrophobicity and Hydrophilicity for Oily Water Separation. J. Membr. Sci. 2021, 638, 119704, 10.1016/j.memsci.2021.119704
Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O'Keeffe, M.; Suh, M. P.; Reedijk, J. Coordination Polymers, Metal-Organic Frameworks and the Need for Terminology Guidelines. CrystEngComm 2012, 14, 3001-3004, 10.1039/c2ce06488j
Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112 (2), 933-969, 10.1021/cr200304e
Lee, Y.; Kim, J.; Ahn, W. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 2013, 30 (9), 1667-1680, 10.1007/s11814-013-0140-6
Hermann, D.; Emerich, H.; Lepski, R.; Schaniel, D.; Ruschewitz, U. Metal-Organic Frameworks as Hosts for Photochromic Guest Molecules. Inorg. Chem. 2013, 52 (5), 2744-2749, 10.1021/ic302856b
Yanai, N.; Uemura, T.; Inoue, M.; Matsuda, R.; Fukushima, T.; Tsujimoto, M.; Isoda, S.; Kitagawa, S. Guest-to-Host Transmission of Structural Changes for Stimuli-Responsive Adsorption Property. J. Am. Chem. Soc. 2012, 134 (10), 4501-4504, 10.1021/ja2115713
Hermann, A. D.; Schwartz, H. A.; Werker, M.; Schaniel, D.; Ruschewitz, U. Metal-Organic Frameworks as Hosts for Fluorinated Azobenzenes: A Path Towards Quantitative Photoswitching with Visible Light. Chem.-Eur. J. 2019, 25, 3606-3616, 10.1002/chem.201805391
Jones, C. L.; Tansell, A. J.; Easun, T. L. The Lighter Side of MOFs: Structurally Photoresponsive Metal-Organic Frameworks. J. Mater. Chem. A 2016, 4 (18), 6714-6723, 10.1039/C5TA09424K
Modrow, A.; Zargarani, D.; Herges, R.; Stock, N. The first porous MOF with photoswitchable linker molecules. Dalton Trans. 2011, 40 (16), 4217-4222, 10.1039/c0dt01629b
Modrow, A.; Feyand, M.; Zargarani, D.; Herges, R.; Stock, N. Systematic Investigation of Porous Inorganic-Organic Hybrid Compounds with Photo-Switchable Properties. Z. Anorg. Allg. Chem. 2012, 638, 2138-2143, 10.1002/zaac.201200048
Wang, Z.; Tanabe, K. K.; Cohen, S. M. Accessing Postsynthetic Modification in a Series of Metal-Organic Frameworks and the Influence of Framework Topology on Reactivity. Inorg. Chem. 2009, 48, 296-306, 10.1021/ic801837t
Healey, K.; Liang, W.; Southon, P. D.; Church, T. L.; D'Alessandro, D. M. Photoresponsive Spiropyran-Functionalised MOF-808: Postsynthetic Incorporation and Light Dependent Gas Adsorption Properties. J. Mater. Chem. A 2016, 4 (28), 10816-10819, 10.1039/C6TA04160D
Park, J.; Yuan, D.; Pham, K. T.; Li, J.-R.; Yakovenko, A.; Zhou, H.-C. Reversible Alteration of CO2 Adsorption upon Photochemical or Thermal Treatment in a Metal-Organic Framework. J. Am. Chem. Soc. 2012, 134 (1), 99-102, 10.1021/ja209197f
Huang, R.; Hill, M. R.; Babarao, R.; Medhekar, N. V. CO2Adsorption in Azobenzene Functionalized Stimuli Responsive Metal-Organic Frameworks. J. Phys. Chem. C 2016, 120 (30), 16658-16667, 10.1021/acs.jpcc.6b03541
Yang, C.-T.; Kshirsagar, A. R.; Eddin, A. C.; Lin, L.-C.; Poloni, R. Tuning Gas Adsorption by Metal Node-Blocking in Photoresponsive Metal-Organic Frameworks. Chem.-Eur. J. 2018, 24 (57), 15167-15172, 10.1002/chem.201804014
Xie, M.; Prasetya, N.; Ladewig, B. P. Systematic Screening of DMOF-1 with NH2, NO2, Br and Azobenzene Functionalities for Elucidation of Carbon Dioxide and Nitrogen Separation Properties. Inorg. Chem. Commun. 2019, 108, 107512, 10.1016/j.inoche.2019.107512
Wang, Z.; Heinke, L.; Jelic, J.; Cakici, M.; Dommaschk, M.; Maurer, R. J.; Oberhofer, H.; Grosjean, S.; Herges, R.; Brase, S.; Reuter, K.; Woll, C. Photoswitching in Nanoporous, Crystalline Solids: An Experimental and Theoretical Study for Azobenzene Linkers Incorporated in MOFs. Phys. Chem. Chem. Phys. 2015, 17, 14582-14587, 10.1039/C5CP01372K
Patel, D. G.; Walton, I. M.; Cox, J. M.; Gleason, C. J.; Butzer, D. R.; Benedict, J. B. Photoresponsive Porous Materials: The Design and Synthesis of Photochromic Diarylethene-Based Linkers and a Metal-Organic Framework. Chem. Commun. 2014, 50 (20), 2653-2656, 10.1039/C3CC49666J
Coudert, F.-X. Responsive Metal-Organic Frameworks and Framework Materials: Under Pressure, Taking the Heat, in the Spotlight, with Friends. Chem. Mater. 2015, 27 (6), 1905-1916, 10.1021/acs.chemmater.5b00046
Prasetya, N. Development of Light-responsive Metal-organic Frameworks and Porous Materials and Their Application in Mixed Matrix Membranes for Gas Separation. Ph.D. Dissertation, Imperial College London, London, UK, 2019; https://spiral.imperial.ac.uk/handle/10044/1/73911 (accessed 2021-11-05).
Prasetya, N.; Ladewig, B. P. New Azo-DMOF-1 MOF as a Photoresponsive Low-Energy CO2Adsorbent and Its Exceptional CO2/N2Separation Performance in Mixed Matrix Membranes. ACS Appl. Mater. Interfaces 2018, 10 (40), 34291-34301, 10.1021/acsami.8b12261
Prasetya, N.; Donose, B. C.; Ladewig, B. P. A New and Highly Robust Light-responsive Azo-UiO-66 for Highly Selective and Low Energy Post-combustion CO2Capture and its Application in a Mixed-Matrix Membrane for CO2/N2Separation. J. Mater. Chem. A 2018, 6 (34), 16390-16402, 10.1039/C8TA03553A
Prasetya, N.; Ladewig, B. P. An Insight on the Effect of Azobenzene Functionalities Studied in UiO-66 Framework for Low Energy CO2Capture and CO2/N2Membrane Separation. J. Mater. Chem. A 2019, 7, 15164-15172, 10.1039/C9TA02096A
Prasetya, N.; Teck, A. A.; Ladewig, B. P. Matrimid-JUC-62 and Matrimid-PCN-250 Mixed Matrix Membranes Displaying Light-Responsive Gas Separation and Beneficial Ageing Characteristics for CO2/N2Separation. Sci. Rep. 2018, 8, 2944, 10.1038/s41598-018-21263-7
Xin, Q.; Cao, X.; Huang, D.; Li, S.; Zhang, X.; Xuan, G.; Wei, M.; Zhang, L.; Ding, X.; Zhang, Y. Smart Light-responsive Hierarchical Metal-Organic Frameworks Constructed Mixed-Matrix Membranes for Efficient Gas Separation. Green Chem. Eng. 2022, 3, 71-82, 10.1016/j.gce.2021.09.004
Luo, F.; Fan, C. B.; Luo, M. B.; Wu, X. L.; Zhu, Y.; Pu, S. Z.; Xu, W.; Guo, G. Photoswitching CO2Capture and Release in a Photochromic Diarylethene Metal-Organic Framework. Angew. Chem., Int. Ed. 2014, 53 (35), 9298-9301, 10.1002/anie.201311124
Nikolayenko, V. I.; Herbert, S. A.; Barbour, L. J. Reversible Structural Switching of a Metal-Organic Framework by Photo-Irradiation. Chem. Commun. 2017, 53 (81), 11142-11145, 10.1039/C7CC06074B
Zhang, S.; Ma, J.; Zhang, X.; Duan, E.; Cheng, P. Assembly of Metal-Organic Frameworks Based on 3, 3, 5, 5-Azobenzene-tetracarboxylic Acid: Photoluminescences, Magnetic Properties, and Gas Separations. Inorg. Chem. 2015, 54 (2), 586-595, 10.1021/ic502488c
Dang, L.-L.; Zhang, X.-J.; Zhang, l.; Li, J.-K.; Luo, F.; Feng, X.-F. Photo-responsive azo-MOF Exhibiting High Selectivity for CO2and Xylene Isomers. J. Coord. Chem. 2016, 69 (7), 1179-1187, 10.1080/00958972.2016.1166359
Fan, C. B.; Liu, Z. Q.; Gong, L. L.; Zheng, A. M.; Zhang, L.; Yan, C. S.; Wu, H. Q.; Feng, X. F.; Luo, F. Photoswitching Adsorption Selectivity in a Diarylethene-Azobenzene MOF. Chem. Commun. 2017, 53 (4), 763-766, 10.1039/C6CC08982H
Prasetya, N.; Ladewig, B. P. Dynamic Photo-Switching in Light-Responsive JUC-62 for CO2Capture. Sci. Rep. 2017, 7, 13355, 10.1038/s41598-017-13536-4
Li, S.; Prasetya, N.; Ladewig, B. P. Investigation of Azo-COP-2 as a Photoresponsive Low-Energy CO2Adsorbent and Porous Filler in Mixed Matrix Membranes for CO2/N2Separation. Ind. Eng. Chem. Res. 2019, 58 (23), 9959-9969, 10.1021/acs.iecr.9b00762
Alrayyes, A. U.; Hu, Y.; Tabor, R. F.; Wang, H.; Saito, K. Photo-Switchable Membranes Constructed from Graphene oxide/star-PDMS Nanocomposites for Gas Permeation Control. J. Mater. Chem. A 2021, 9 (37), 21167-21174, 10.1039/D1TA05947E
Haldar, R.; Wöll, C. Hierarchical Assemblies of Molecular Frameworks-MOF-on-MOF Epitaxial Heterostructures. Nano Res. 2021, 14, 355-368, 10.1007/s12274-020-2953-z
Fu, W.-Q.; Liu, M.; Gu, Z.-G.; Chen, S.-M.; Zhang, J. Liquid Phase Epitaxial Growth and Optical Properties of Photochromic Guest-Encapsulated MOF Thin Film. Cryst. Growth Des. 2016, 16 (9), 5487-5492, 10.1021/acs.cgd.6b00935
Heinke, L.; Cakici, M.; Dommaschk, M.; Grosjean, S.; Herges, R.; Bräse, S.; Wöll, C. Photoswitching in Two-Component Surface-Mounted Metal-Organic Frameworks: Optically Triggered Release from a Molecular Container. ACS Nano 2014, 8 (2), 1463-1467, 10.1021/nn405469g
Knebel, A.; Sundermann, L.; Mohmeyer, A.; Strauß, I.; Friebe, S.; Behrens, P.; Caro, J. Azobenzene Guest Molecules as Light-Switchable CO2Valves in an Ultrathin UiO-67 Membrane. Chem. Mater. 2017, 29 (7), 3111-3117, 10.1021/acs.chemmater.7b00147
Müller, K.; Wadhwa, J.; Singh Malhi, J.; Schöttner, L.; Welle, A.; Schwartz, H.; Hermann, D.; Ruschewitz, U.; Heinke, L. Photoswitchable Nanoporous Films by Loading Azobenzene in Metal-Organic Frameworks of Type HKUST-1. Chem. Commun. 2017, 53 (57), 8070-8073, 10.1039/C7CC00961E
Yu, X.; Wang, Z.; Buchholz, M.; Füllgrabe, N.; Grosjean, S.; Bebensee, F.; Bräse, S.; Wöll, C.; Heinke, L. Cis-to-trans Isomerization of Azobenzene Investigated by Using Thin Films of Metal-Organic Frameworks. Phys. Chem. Chem. Phys. 2015, 17 (35), 22721-22725, 10.1039/C5CP03091A
Muller, K.; Knebel, A.; Zhao, F.; Bleger, D.; Caro, J.; Heinke, L. Switching Thin Films of Azobenzene-Containing Metal-Organic Frameworks with Visible Light. Chem.-Eur. J. 2017, 23 (23), 5434-5438, 10.1002/chem.201700989
Jiang, Y.; Heinke, L. Photoswitchable Metal-Organic Framework Thin Films: From Spectroscopy to Remote-Controllable Membrane Separation and Switchable Conduction. Langmuir 2021, 37 (1), 2-15, 10.1021/acs.langmuir.0c02859
Weh, K.; Noack, M.; Hoffmann, K.; Schröder, K.-P.; Caro, J. Change of Gas Permeation by Photoinduced Switching of Zeolite-Azobenzene Membranes of Type MFI and FAU. Microporous Mesoporous Mater. 2002, 54 (1-2), 15-26, 10.1016/S1387-1811(02)00331-1
Soukup, K.; Schneider, P.; Šolcová, O. Comparison of Wicke-Kallenbach and Graham's Diffusion Cells for Obtaining Transport Characteristics of Porous Solids. Chem. Eng. Sci. 2008, 63 (4), 1003-1011, 10.1016/j.ces.2007.10.032
Sridhar, S.; Bee, S.; Bhargava, S. K. Membrane-based Gas Separation: Principle, Applications and Future Potential. J. Membr. Sci. 2014, 77-87, 1-25
Šolcová, O. Chemical Engineering Aspects of Gas Transport in Porous Solids. Ph.D. Dissertation, Academy of Sciences of the Czech Republic, Praha, Czech Republic, 2011; https://www.avcr.cz/export/sites/avcr.cz/cs/pro-verejnost/.content/soubory/dsc-teze/Solcova_DSc-teze.pdf (accessed 2021-11-06).
Liu, C.; Jiang, Y.; Zhou, C.; Caro, J.; Huang, A. Photo-Switchable Smart Metal-Organic Frameworks Membranes with Tunable and Enhanced Molecule Sieving Performance. J. Mater. Chem. A 2018, 6 (48), 24949-24955, 10.1039/C8TA10541C