Electro-optics; Electro=optic coefficients; Electrooptic effects; Electrooptical properties; Ferroelectric thin-films; Integrated photonic circuit; Linear electro-optic effect; Polycrystalline; Strain engineering; Thin film material; Electronic, Optical and Magnetic Materials
Abstract :
[en] Electro-optic thin film materials, which change their refractive index upon the application of an electric field, are crucial for the fabrication of optical modulators in integrated photonic circuits. Therefore, it is key to develop strategies to tune the linear electro-optic effect. Strain engineering has arisen as a powerful tool to optimize the electro-optic coefficients in ferroelectric thin films. In this report, the electro-optical properties of polycrystalline bismuth ferrite (BiFeO3) thin films are studied. The electro-optic coefficients (reff) of low-cost solution-processed BiFeO3 films under different substrate-induced thermal stress are characterized using a modified Teng-Man technique in transmission geometry. The influence of poling state and substrate stress on the electro-optical properties are discussed. The films show a notable piezo-electro-optic effect: the effective electro-optic coefficient increases both under compressive and tensile in-plane stress, with compressive stress having a much more profound impact. Electro-optic coefficients of 2.2 pm/V are obtained in films under a biaxial compressive stress of 0.54 GPa.
Disciplines :
Physics
Author, co-author :
Martínez, Alfredo Blázquez; Luxembourg Institute of Science and Technology, Materials Research and Technology, Belvaux, Luxembourg ; Department of Physics and Materials Science, University of Luxembourg, Belvaux, Luxembourg ; Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials, Belvaux, Luxembourg
Grysan, Patrick; Luxembourg Institute of Science and Technology, Materials Research and Technology, Belvaux, Luxembourg
Girod, Stéphanie; Luxembourg Institute of Science and Technology, Materials Research and Technology, Belvaux, Luxembourg
Glinsek, Sebastjan; Luxembourg Institute of Science and Technology, Materials Research and Technology, Belvaux, Luxembourg ; Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials, Belvaux, Luxembourg
Aruchamy, Naveen; Luxembourg Institute of Science and Technology, Materials Research and Technology, Belvaux, Luxembourg ; Department of Physics and Materials Science, University of Luxembourg, Belvaux, Luxembourg
BISWAS, Pranab ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials, Belvaux, Luxembourg
GUENNOU, Mael ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials, Belvaux, Luxembourg
Granzow, Torsten ; Luxembourg Institute of Science and Technology, Materials Research and Technology, Belvaux, Luxembourg ; Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials, Belvaux, Luxembourg
External co-authors :
no
Language :
English
Title :
Strain engineering of the electro-optic effect in polycrystalline BiFeO3 films [Invited]
S. Abel, F. Eltes, and J. E. Ortmann, et al., “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18(1), 42–47 (2019).
F. Eltes, C. Mai, D. Caimi, M. Kroh, Y. Popoff, G. Winzer, D. Petousi, S. Lischke, J. Elliott Ortmann, L. Czornomaz, L. Zimmermann, J. Fompeyrine, and S. Abel, “A BaTiO3-Based Electro-Optic Pockels Modulator Monolithically Integrated on an Advanced Silicon Photonics Platform,” J. Lightwave Technol. 37(5), 1456–1462 (2019).
M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50(9), 5941–5949 (1994).
E.-D. 2002/95/EC, “Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS),” Off. J. Eur. Union 46, 19–23 (2003).
A. Blázquez Martínez, P. Grysan, S. Girod, S. Glinsek, and T. Granzow, “Direct evidence for bulk photovoltaic charge transport in a ferroelectric polycrystalline film,” Scr. Mater. 211, 114498 (2022).
H. Matsuo, Y. Noguchi, and M. Miyayama, “Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications,” Nat. Commun. 8(1), 207 (2017).
G. Catalan and J. F. Scott, “Physics and applications of bismuth ferrite,” Adv. Mater. 21(24), 2463–2485 (2009).
R. Guo, L. You, Y. Zhou, Z. Shiuh Lim, X. Zou, L. Chen, R. Ramesh, and J. Wang, “Non-volatile memory based on the ferroelectric photovoltaic effect,” Nat. Commun. 4(1), 1990 (2013).
A. Bhatnagar, A. Roy Chaudhuri, Y. H. Kim, D. Hesse, and M. Alexe, “Role of domain walls in the abnormal photovoltaic effect in BiFeO3,” Nat. Commun. 4(1), 2835 (2013).
R. Ramesh and N. A. Spaldin, “Multiferroics: progress and prospects in thin films, Nat. Mater. 6, 21–29 (2007).
G. S. Kiselev, S. V. Ozerov, and R. P. Zhdanov, “Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction,” Sov. Phys. Dokl. 7, 742–744 (1963).
S. Kamba, D. Nuzhnyy, M. Savinov, J. Šebek, J. Petzelt, J. Prokleška, R. Haumont, and J. Kreisel, “Infrared and terahertz studies of polar phonons and magnetodielectric effect in BiFeO3,” Phys. Rev. B 75(2), 024403 (2007).
R. P. S. M. Lobo, R. L. Moreira, D. Lebeugle, and D. Colson, “Infrared phonon dynamics of a multiferroic BiFeO3 single crystal,” Phys. Rev. B 76(17), 172105 (2007).
S. Chu, D. Singh, J. Wang, E.-P. Li, and K. Ong, “High optical performance and practicality of active plasmonic devices based on rhombohedral BiFeO3,” Laser Photonics Rev. 6(5), 684–689 (2012).
D. Sando, P. Hermet, J. Allibe, J. Bourderionnet, S. Fusil, C. Carrétéro, E. Jacquet, J.-C. Mage, D. Dolfi, A. Barthélémy, P. Ghosez, and M. Bibes, “Linear electro-optic effect in multiferroic BiFeO3 thin films,” Phys. Rev. B 89(19), 195106 (2014).
M. C. Weber, M. Guennou, C. Toulouse, M. Cazayous, Y. Gillet, X. Gonze, and J. Kreisel, “Temperature evolution of the band gap in BiFeO3 traced by resonant Raman scattering,” Phys. Rev. B 93(12), 125204 (2016).
D. Sando, C. Carrétéro, M. N. Grisolia, A. Barthélémy, V. Nagarajan, and M. Bibes, “Revisiting the Optical Band Gap in Epitaxial BiFeO3 Thin Films,” Adv. Opt. Mater. 6(2), 1700836 (2018).
D. Lebeugle, D. Colson, A. Forget, and M. Viret, “Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields,” Appl. Phys. Lett. 91(2), 022907 (2007).
S.-H. Baek, C. M. Folkman, J.-W. Park, S. Lee, C.-W. Bark, T. Tybell, and C.-B. Eom, “The Nature of Polarization Fatigue in BiFeO3,” Adv. Mater. 23(14), 1621–1625 (2011).
M. Zhu, Z. Du, Q. Liu, B. Chen, S. H. Tsang, and E. H. T. Teo, “Ferroelectric BiFeO3 thin-film optical modulators,” Appl. Phys. Lett. 108(23), 233502 (2016).
K. D. Fredrickson, V. V. Vogler-Neuling, K. J. Kormondy, D. Caimi, F. Eltes, M. Sousa, J. Fompeyrine, S. Abel, and A. A. Demkov, “Strain enhancement of the electro-optical response in BaTiO3 films integrated on Si(001),” Phys. Rev. B 98(7), 075136 (2018).
C. Paillard, S. Prokhorenko, and L. Bellaiche, “Strain engineering of electro-optic constants in ferroelectric materials,” npj Comput. Mater. 5(1), 6 (2019).
S. Kondo, T. Yamada, A. K. Tagantsev, P. Ma, J. Leuthold, P. Martelli, P. Boffi, M. Martinelli, M. Yoshino, and T. Nagasaki, “Large impact of strain on the electro-optic effect in (Ba,Sr)TiO3 thin films: Experiment and theoretical comparison,” Appl. Phys. Lett. 115(9), 092901 (2019).
C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
M. Zhu, Z. Du, L. Jing, A. I. Yoong Tok, and E. H. Tong Teo, “Optical and electro-optic anisotropy of epitaxial PZT thin films,” Appl. Phys. Lett. 107(3), 031907 (2015).
R. Nigon, T. M. Raeder, and P. Muralt, “Characterization methodology for lead zirconate titanate thin films with interdigitated electrode structures,” J. Appl. Phys. 121(20), 204101 (2017).
T. W. Hou and C. J. Mogab, “Plasma silicon oxide films on garnet substrates: measurement of their thickness and refractive index by the prism coupling technique,” Appl. Opt. 20(18), 3184 (1981).
A. Blázquez Martínez, N. Godard, N. Aruchamy, C. Milesi-Brault, O. Condurache, A. Bencan, S. Glinsek, and T. Granzow, “Solution-processed BiFeO3 thin films with low leakage current,” J. Eur. Ceram. Soc. 41(13), 6449–6455 (2021).
A. Blázquez Martínez, P. Grysan, S. Girod, S. Glinsek, and T. Granzow, “Stress-tuning the bulk photovoltaic response in polycrystalline bismuth ferrite films,” Appl. Phys. Lett. 122(15), 152903 (2023).
S.-R. Jian, H.-W. Chang, Y.-C. Tseng, P.-H. Chen, and J.-Y. Juang, “Structural and nanomechanical properties of BiFeO3 thin films deposited by radio frequency magnetron sputtering,” Nanoscale Res. Lett. 8(1), 297 (2013).
W. H. G. Horsthuis and G. J. M. Krijnen, “Simple measuring method for electro-optic coefficients in poled polymer waveguides,” Appl. Phys. Lett. 55(7), 616–618 (1989).
B. A. Smith, S. Herminghaus, and J. D. Swalen, “Electrooptic Coefficients in Electric Field Poled Polymer Waveguides,” MRS Proc. 228, 111 (1991).
A. Boudrioua, E. Dogheche, D. Remiens, and J. C. Loulergue, “Electro-optic characterization of (Pb,La)TiO3 thin films using prism-coupling technique,” J. Appl. Phys. 85(3), 1780–1783 (1999).
B. Chen, P.-R. Hua, S.-Y. Xu, D.-Y. Yu, E. Y.-B. Pun, and D.-L. Zhang, “Mode Indices Measurement of a Special Ti-Diffused LiNbO3 Waveguide Structure: A Strip Waveguide Array Embedded in a Planar Waveguide,” IEEE Photonics J. 4(5), 1553–1559 (2012).
P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14(9), 291–294 (1969).
A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3,” Appl. Phys. Lett. 92(12), 121915 (2008).
D. Sando, Y. Yang, E. Bousquet, C. Carrétéro, V. Garcia, S. Fusil, D. Dolfi, A. Barthélémy, P. Ghosez, L. Bellaiche, and M. Bibes, “Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3,” Nat. Commun. 7(1), 10718 (2016).
E. Nitiss, A. Bundulis, A. Tokmakov, J. Busenbergs, E. Linina, and M. Rutkis, “Review and comparison of experimental techniques used for determination of thin film electro-optic coefficients,” Phys. Status Solidi A 212(9), 1867–1879 (2015).
D. Park, “Characterization of Linear Electro-Optic Effect of Poled Organic Thin Films,” Ph.D. thesis (2008).
D. Sando, Y. Yang, C. Paillard, B. Dkhil, L. Bellaiche, and V. Nagarajan, “Epitaxial ferroelectric oxide thin films for optical applications,” Appl. Phys. Rev. 5(4), 041108 (2018).
C. Li, F. Yang, and W. L. Guo, “Strain-induced modulations of electro-optic and nonlinear optical properties of ZnO: a first-principles study,” Appl. Mech. Mater. 29-32, 1803–1808 (2010).
M. Guennou, P. Bouvier, G. S. Chen, B. Dkhil, R. Haumont, G. Garbarino, and J. Kreisel, “Multiple high-pressure phase transitions in BiFeO3,” Phys. Rev. B 84(17), 174107 (2011).
D. Sando, A. Barthélémy, and M. Bibes, “BiFeO3 epitaxial thin films and devices: past, present and future,” J. Phys.: Condens. Matter 26(47), 473201 (2014).
I. C. Infante, S. Lisenkov, B. Dupé, M. Bibes, S. Fusil, E. Jacquet, G. Geneste, S. Petit, A. Courtial, J. Juraszek, L. Bellaiche, A. Barthélémy, and B. Dkhil, “Bridging Multiferroic Phase Transitions by Epitaxial Strain in BiFeO3,” Phys. Rev. Lett. 105(5), 057601 (2010).
P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24(21), 1508 (1999).
F. Juvalta, B. Koziarska-Glinka, M. Jazbinsek, G. Montemezzani, K. Kitamura, and P. Günter, “Deep UV light induced, fast reconfigurable and fixed waveguides in Mg doped LiTaO3,” Opt. Express 14(18), 8278 (2006).
Y. Kong, S. Liu, and J. Xu, “Recent advances in the photorefraction of doped lithium niobate crystals,” Materials 5(10), 1954–1971 (2012).