A holobiont approach towards polysaccharide degradation by the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis.
[en] [en] BACKGROUND: Termites are among the most successful insects on Earth and can feed on a broad range of organic matter at various stages of decomposition. The termite gut system is often referred to as a micro-reactor and is a complex structure consisting of several components. It includes the host, its gut microbiome and fungal gardens, in the case of fungi-growing higher termites. The digestive tract of soil-feeding higher termites is characterised by radial and axial gradients of physicochemical parameters (e.g. pH, O2 and H2 partial pressure), and also differs in the density and structure of residing microbial communities. Although soil-feeding termites account for 60% of the known termite species, their biomass degradation strategies are far less known compared to their wood-feeding counterparts.
RESULTS: In this work, we applied an integrative multi-omics approach for the first time at the holobiont level to study the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis. We relied on 16S rRNA gene community profiling, metagenomics and (meta)transcriptomics to uncover the distribution of functional roles, in particular those related to carbohydrate hydrolysis, across different gut compartments and among the members of the bacterial community and the host itself. We showed that the Labiotermes gut was dominated by members of the Firmicutes phylum, whose abundance gradually decreased towards the posterior segments of the hindgut, in favour of Bacteroidetes, Proteobacteria and Verrucomicrobia. Contrary to expectations, we observed that L. labralis gut microbes expressed a high diversity of carbohydrate active enzymes involved in cellulose and hemicelluloses degradation, making the soil-feeding termite gut a unique reservoir of lignocellulolytic enzymes with considerable biotechnological potential. We also evidenced that the host cellulases have different phylogenetic origins and structures, which is possibly translated into their different specificities towards cellulose. From an ecological perspective, we could speculate that the capacity to feed on distinct polymorphs of cellulose retained in soil might have enabled this termite species to widely colonise the different habitats of the Amazon basin.
CONCLUSIONS: Our study provides interesting insights into the distribution of the hydrolytic potential of the highly compartmentalised higher termite gut. The large number of expressed enzymes targeting the different lignocellulose components make the Labiotermes worker gut a relevant lignocellulose-valorising model to mimic by biomass conversion industries.
Research center :
LIST - Luxembourg Institute of Science & Technology
Disciplines :
Microbiology
Author, co-author :
Marynowska, Martyna; Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422, Belvaux, Luxembourg ; Evolutionary Biology and Ecology, Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, B-1050, Brussels, Belgium
Sillam-Dussès, David; University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, LEEC, UR 4443, F-93430, Villetaneuse, France
Untereiner, Boris; Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422, Belvaux, Luxembourg
Klimek, Dominika; Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422, Belvaux, Luxembourg
Goux, Xavier; Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422, Belvaux, Luxembourg
GAWRON, Piotr ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Bioinformatics Core > Visualisation
Roisin, Yves; Evolutionary Biology and Ecology, Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, B-1050, Brussels, Belgium
DELFOSSE, Philippe ; University of Luxembourg > CRC > Rectorate ; Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422, Belvaux, Luxembourg
CALUSINSKA, Magdalena ; University of Luxembourg ; Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422, Belvaux, Luxembourg. magdalena.calusinska@list.lu
External co-authors :
yes
Language :
English
Title :
A holobiont approach towards polysaccharide degradation by the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis.
Explor‑ ing the higher termite lignocellulolytic system to optimise the conversion of biomass into energy and useful platform molecules
Funders :
Fonds National de la Recherche Luxembourg F.R.S.-FNRS Belgium
Funding number :
C14/SR/ 8286517
Funding text :
This research was funded within the FNR 2014 CORE project OPTILYS (Exploring the higher termite lignocellulolytic system to optimise the conversion of biomass into energy and useful platform molecules/C14/SR/ 8286517) and grant PDR T.0065.15 from the Belgian F.R.S.-FNRS.
Commentary :
This research integrates in the quest for new enzymes to convert organic matter into energy and useful platform molecules towards a post-fossil energy world. Termites are among the most successful insects on Earth and can feed on a broad range of organic matter at various stages of decomposition. The termite gut system is often referred to as a micro‑reactor and is a complex structure consisting of several components. Although soil‑feeding termites account for 60% of the known termite species, their biomass degradation strategies are far less known compared to their wood‑feeding counterparts.
Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol. 2014;12:168–80.
Donovan SE, Eggleton P, Bignell DE. Gut content analysis and a new feeding group classification of termites. Ecol Entomol. 2001;26:356–66.
Eggleton P. Global patterns of termite diversity. In: Termites: evolution, sociality, symbioses, ecology. Springer, Dordrecht; 2000. p. 25–51.
Brauman A, Bignell DE, Tayasu I. Soil-Feeding Termites: Biology, Microbial Associations and Digestive Mechanisms. In: Abe, T., Bignell, D.E., Higashi, M. (eds) Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht: Springer; 2000. https://doi.org/10.1007/978-94-017-3223-9_11.
Coleman DC, Wall DH. Chapter 5 – Soil Fauna: Occurrence, biodiversity, and roles in ecosystem function. 2015.
Ji R, Brune A. Transformation and mineralization of 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes Orthognathus. Biol Fertil Soils. 2001;33:166–74.
Arora J, Kinjo Y, Šobotník J, Buček A, Clitheroe C, Stiblik P, et al. The functional evolution of termite gut microbiota. Microbiome. 2022;10:1–22.
Calusinska M, Marynowska M, Bertucci M, Untereiner B, Klimek D, Goux X, et al. Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes. Commun Biol. 2020;3:1–12.
Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefèvre C, Halder R, Wilmes P, et al. Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre- And soil-feeding higher termites. Microbiome. 2020;8:1–18.
Moreira EA, Persinoti GF, Menezes LR, Paixão DAA, Alvarez TM, Cairo JPLF, et al. Complementary contribution of fungi and bacteria to lignocellulose digestion in the food stored by a neotropical higher termite. Front Ecol Evol. 2021;9 April:1–12.
Bourguignon T, Šobotník J, Lepoint G, Martin JM, Hardy OJ, Dejean A, et al. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol. 2011;36:261–9.
Nanthi S. Bolan, Domy C. Adriano, Anitha Kunhikrishnan, Trevor James, Richard McDowell NS. Dissolved organic matter: Biogeochemistry, dynamics, and environmental significance in soils. in: advances in agronomy. Academic Press; 2011. p. 1–75. https://www.sciencedirect.com/science/article/abs/pii/B9780123855312000013.
Constantino R, Acioli ANS, Schmidt K, Cuezzo C, Carvalho SHC, Vasconcellos A. A taxonomic revision of the Neotropical termite genera Labiotermes Holmgren and Paracornitermes Emerson (Isoptera: Termitidae: Nasutitermitinae). Zootaxa. 2006;44:1–44.
Holmgren N. Studien über südamerikanische Termiten. Zool Jahrbücher Abt Syst. 1906;23:521–676.
Brune A, Kühl M. pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol. 1996;42:1121–7.
Schmitt-Wagner D, Brune A. Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol. 1999;65:4497–505.
Mikaelyan A, Meuser K, Brune A. Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol Ecol. 2017;93:1–11.
Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A. Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol. 2003;69:6007–17.
Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefèvre C, Roisin Y, Delfosse P, et al. Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. BMC Genomics. 2017;18:1–14.
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:1–11.
Calusinska M, Goux X, Fossépré M, Muller EEL, Wilmes P, Delfosse P. A year of monitoring 20 mesophilic full-scale bioreactors reveals the existence of stable but different core microbiomes in bio-waste and wastewater anaerobic digestion systems. Biotechnol Biofuels. 2018;11:1–19.
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:643–8.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;2019:1–13.
Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:1–13.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2020;36:1925–7.
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:1–8.
Hervé V, Liu P, Dietrich C, Sillam-Dussès D, Stiblik P, Šobotník J, et al. Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ. 2020;2020:1–27.
Kopylova E, Noé L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
Brůna T, Lomsadze A, Borodovsky M. GeneMark-EP+: Eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genomics Bioinforma. 2020;2:1–14.
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:1–13.
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J Mol Biol. 2016;428:726–31.
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30.
Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. DbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95-101.
Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 2022;50:D571–7.
Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38:3022–7.
Wertz JT, Kim E, Breznak JA, Schmidt TM, Rodrigues JLM. Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Appl Environ Microbiol. 2012;78:1544–55.
Brune A. Termite guts: the world’s smallest bioreactors. Trends Biotechnol. 1998;16:16–21.
Rossmassler K, Dietrich C, Thompson C, Mikaelyan A, Nonoh JO, Scheffrahn RH, et al. Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome. 2015;3:56.
Westerholm M, Calusinska M, Dolfing J. Syntrophic propionate-oxidizing bacteria in methanogenic systems. FEMS Microbiol Rev. 2022;46:1–26.
He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, et al. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One. 2013;8(4):e61126.
Scheiblbrandner S, Ludwig R. Cellobiose dehydrogenase: Bioelectrochemical insights and applications. Bioelectrochemistry. 2020;131:107345.
Bignell DE. Relative assimilations of 14C-labelled microbial tissues and 14C-plant fibre ingested with leaf litter by the millipede Glomeris marginata under experimental conditions. Soil Biol Biochem. 1989;21:819–27.
Fujita AI. Lysozymes in insects: What role do they play in nitrogen metabolism? Physiol Entomol. 2004;29:305–10.
Geng A, Cheng Y, Wang Y, Zhu D, Le Y, Wu J, et al. Transcriptome analysis of the digestive system of a wood-feeding termite (Coptotermes formosanus) revealed a unique mechanism for effective biomass degradation. Biotechnol Biofuels. 2018;11:1–14.
Wang K. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract : refining on a tightly designed microbial fermentation production line. Microbiome. 2021;10:1–16.
Tokuda G, Watanabe H, Hojo M, Fujita A, Makiya H, Miyagi M, et al. Cellulolytic environment in the midgut of the wood-feeding higher termite Nasutitermes takasagoensis. J Insect Physiol. 2012;58:147–54.
Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci U S A. 2014;111:14500–5.
Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, et al. Molecular traces of alternative social organization in a termite genome. Nat Commun. 2014;5:3636.
Bujang NS, Harrison NA, Su NY. A phylogenetic study of endo-beta-1,4-glucanase in higher termites. Insectes Soc. 2014;61:29–40.
Uchiyama T, Uchihashi T, Nakamura A, Watanabe H, Kaneko S, Samejima M, et al. Convergent evolution of processivity in bacterial and fungal cellulases. Proc Natl Acad Sci U S A. 2020;117:19896–903.
Griffiths BS, Bracewell JM, Robertson GW, Bignell DE. Pyrolysis-mass spectrometry confirms enrichment of lignin in the faeces of a wood-feeding termite, Zootermopsis nevadensis and depletion of peptides in a soil-feeder, Cubitermes ugandensis. Soil Biol Biochem. 2013;57:957–9.
Feng G, Flanagan BM, Mikkelsen D, Williams BA, Yu W, Gilbert RG, et al. Mechanisms of utilisation of arabinoxylans by a porcine faecal inoculum: Competition and co-operation. Sci Rep. 2018;8:1–11.
Nishimura Y, Otagiri M, Yuki M, Shimizu M, Inoue J ichi, Moriya S, et al. Division of functional roles for termite gut protists revealed by single-cell transcriptomes. ISME J. 2020;14:2449–60.
Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MDM, et al. Lignin degradation in wood-feeding insects. Proc Natl Acad Sci U S A. 2008;105:12932–7.
Li H, Yelle DJ, Li C, Yang M, Ke J, Zhang R, et al. Lignocellulose pretreatment in a fungus-cultivating termite. Proc Natl Acad Sci U S A. 2017;114:4709–14.
Mora P, Lattaud C, Rouland-Lefèvre C. Recherche d’enzymes intevenant dans la dégradation de la lignine chez plusieurs espèces de termites de régime alimentaire différents. Actes Colloq UIEIS. 1998;11:77–80.
Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkolazka A, Paszczyński A. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev. 2017;41:941–62.
Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, et al. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc Natl Acad Sci U S A. 2018;115:E11996–2004.
Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels. 2009;2:1–19.