Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
Harnessing Supervised Learning for Adaptive Beamforming in Multibeam Satellite Systems
ORTIZ GOMEZ, Flor de Guadalupe; VASQUEZ-PERALVO, Juan Andres; QUEROL, Jorge et al.
20232024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)
Peer reviewed
 

Documents


Texte intégral
2309.14123 (3).pdf
Preprint Auteur (7.76 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
beamforming; Machine Learning; multibeam satellite
Résumé :
[en] In today's ever-connected world, the demand for fast and widespread connectivity is insatiable, making multibeam satellite systems an indispensable pillar of modern telecommunications infrastructure. However, the evolving communication landscape necessitates a high degree of adaptability. This adaptability is particularly crucial for beamforming, as it enables the adjustment of peak throughput and beamwidth to meet fluctuating traffic demands by varying the beamwidth, side lobe level (SLL), and effective isotropic radiated power (EIRP). This paper introduces an innovative approach rooted in supervised learning to efficiently derive the requisite beamforming matrix, aligning it with system requirements. Significantly reducing computation time, this method is uniquely tailored for real-time adaptation, enhancing the agility and responsiveness of satellite multibeam systems. Exploiting the power of supervised learning, this research enables multibeam satellites to respond quickly and intelligently to changing communication needs, ultimately ensuring uninterrupted and optimized connectivity in a dynamic world.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
ORTIZ GOMEZ, Flor de Guadalupe  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
VASQUEZ-PERALVO, Juan Andres ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
QUEROL, Jorge  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
LAGUNAS, Eva  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
GONZALEZ RIOS, Jorge Luis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
GARCES SOCARRAS, Luis Manuel  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
MONZON BAEZA, Victor  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Harnessing Supervised Learning for Adaptive Beamforming in Multibeam Satellite Systems
Date de publication/diffusion :
16 décembre 2023
Nom de la manifestation :
2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)
Date de la manifestation :
5 - 8 May 2024
Manifestation à portée :
International
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 18 janvier 2024

Statistiques


Nombre de vues
174 (dont 15 Unilu)
Nombre de téléchargements
155 (dont 13 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu