[en] In today's ever-connected world, the demand for fast and widespread connectivity is insatiable, making multibeam satellite systems an indispensable pillar of modern telecommunications infrastructure. However, the evolving communication landscape necessitates a high degree of adaptability. This adaptability is particularly crucial for beamforming, as it enables the adjustment of peak throughput and beamwidth to meet fluctuating traffic demands by varying the beamwidth, side lobe level (SLL), and effective isotropic radiated power (EIRP). This paper introduces an innovative approach rooted in supervised learning to efficiently derive the requisite beamforming matrix, aligning it with system requirements. Significantly reducing computation time, this method is uniquely tailored for real-time adaptation, enhancing the agility and responsiveness of satellite multibeam systems. Exploiting the power of supervised learning, this research enables multibeam satellites to respond quickly and intelligently to changing communication needs, ultimately ensuring uninterrupted and optimized connectivity in a dynamic world.
Disciplines :
Electrical & electronics engineering
Author, co-author :
ORTIZ GOMEZ, Flor de Guadalupe ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
VASQUEZ-PERALVO, Juan Andres ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
QUEROL, Jorge ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
LAGUNAS, Eva ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
GONZALEZ RIOS, Jorge Luis ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
GARCES SOCARRAS, Luis Manuel ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
MONZON BAEZA, Victor ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
External co-authors :
no
Language :
English
Title :
Harnessing Supervised Learning for Adaptive Beamforming in Multibeam Satellite Systems
Publication date :
16 December 2023
Event name :
2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)