[en] Microbially induced calcite precipitation (MICP) is a green bio-inspired soil solidification technique that depends on the ability of urease-producing bacteria to form calcium carbonate that bonds soil grains and, consequently, improves soil mechanical properties. Meanwhile, different treatment methods have been adopted to tackle the key challenges in achieving effective MICP treatment. This paper proposes the combined method as a new MICP treatment approach, aiming to develop the efficiency of MICP treatment methods and simulate naturally cemented soil. This method combines the premixing, percolation, and submerging MICP methods. The strength outcomes of Portland-cemented and MICP-cemented sand using the percolation and combined methods were compared. For Portland-cemented sand, the UCS values varied from 0.6 MPa to 17.2 MPa, corresponding to cementation levels ranging from 5% to 30%. For MICP-cemented sand, the percolation method yielded UCS values ranging from 0.5 to 0.9 MPa, while the combined method achieved 3.7 MPa. The strength obtained by the combined method is around 3.7 times higher than that of the percolation method. The stiffness of bio-cemented samples varied between 20 and 470 MPa, while for Portland-cemented sand, it ranged from 130 to 1200 MPa. In terms of calcium carbonate distribution, the percolation method exhibited higher concentration at the top of the sample, while the combined method exhibited more precipitation at the top and perimeter, with less concentration in the central bottom region, equivalent to 10% of a half section’s area.
Disciplines :
Civil engineering
Author, co-author :
Zeitouny, Jude; Department of Soil Mechanics, Foundation Engineering and Environmental Geotechnics, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
Lieske, Wolfgang; Department of Soil Mechanics, Foundation Engineering and Environmental Geotechnics, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
ALIMARDANI LAVASAN, Arash ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Heinz, Eva; Department of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
Wichern, Marc ; Department of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
Wichtmann, Torsten; Department of Soil Mechanics, Foundation Engineering and Environmental Geotechnics, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
External co-authors :
yes
Language :
English
Title :
Impact of New Combined Treatment Method on the Mechanical Properties and Microstructure of MICP-Improved Sand
Airey D.W. Triaxial testing of naturally cemented carbonate soil J. Geotech. Eng. 1993 119 1379 1398 10.1061/(ASCE)0733-9410(1993)119:9(1379)
Konstantinou C. Biscontin G. Jiang N.J. Soga K. Application of microbially induced carbonate precipitation to form bio-cemented artificial sandstone J. Rock Mech. Geotech. Eng. 2021 13 579 592 10.1016/j.jrmge.2021.01.010
Clough W. Sitar N. Bachus R. Cemented Sands under Static Loading J. Geotech. Eng. Div. 1981 107 799 817 10.1061/AJGEB6.0001152
Ahmed Ali K. Ahmad M.I. Yusup Y. Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector Sustainability 2020 12 7427 10.3390/su12187427
Ashraf M.S. Hassan Shah M.U. Bokhari A. Hasan M. Less is more: Optimising the biocementation of coastal sands by reducing influent urea through response surface method J. Clean. Prod. 2021 315 128208 10.1016/j.jclepro.2021.128208
Omoregie A.I. A Feasibility Study to Scale-Up The Production of Sporosarcina pasteurii, Using Industrial-Grade Reagents, For Cost-Effective In-Situ Biocementation Ph.D. Thesis Swinburne University of Technology Sarawak Campus Kuching, Malaysia 2020
Ahenkorah I. Rahman M.M. Karim M.R. Teasdale P.R. A comparison of mechanical responses for microbial-and enzyme-induced cemented sand Geotech. Lett. 2020 10 559 567 10.1680/jgele.20.00061
Whiffin V.S. Microbial CaCO3 Precipitation for the Production of Biocement Ph.D. Thesis Murdoch University Perth, Australia 2004
Venuleo S. Laloui L. Terzis D. Hueckel T. Hassan M. Microbially induced calcite precipitation effect on soil thermal conductivity Geotech. Lett. 2016 6 39 44 10.1680/jgele.15.00125
Kou H.l. Wu C. Jang B.A. Wang D. Spatial Distribution of CaCO3 in Biocemented Sandy Slope Using Surface Percolation J. Mater. Civ. Eng. 2021 33 6021004 10.1061/(ASCE)MT.1943-5533.0003729
Cheng L. Shahin M.A. Cord-Ruwisch R. Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments Géotechnique 2014 64 1010 1013 10.1680/geot.14.T.025
Haouzi F.Z. Courcelles B. Major applications of MICP sand treatment at multi-scale levels: A review Proceedings of the Geo Edmonton Edmonton, AB, Canada 23–26 September 2018
Xu X. Guo H. Cheng X. Li M. The promotion of magnesium ions on aragonite precipitation in MICP process Constr. Build. Mater. 2020 263 120057 10.1016/j.conbuildmat.2020.120057
Abdel Gawwad H.A. Mohamed S.A.E.A. Mohammed S.A. Impact of magnesium chloride on the mechanical properties of innovative bio-mortar Mater. Lett. 2016 178 39 43 10.1016/j.matlet.2016.04.190
Cui M.J. Lai H.J. Hoang T. Chu J. One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement Acta Geotech. 2021 16 481 489 10.1007/s11440-020-01043-2
Cheng L. Shahin M.A. Chu J. Soil bio-cementation using a new one-phase low-pH injection method Acta Geotech. 2019 14 615 626 10.1007/s11440-018-0738-2
Xiao P. Liu H. Stuedlein A.W. Evans T.M. Xiao Y. Effect of relative density and biocementation on cyclic response of calcareous sand Can. Geotech. J. 2019 56 1849 1862 10.1139/cgj-2018-0573
Yasuhara H. Neupane D. Hayashi K. Okamura M. Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation Soils Found. 2012 52 539 549 10.1016/j.sandf.2012.05.011
Mujah D. Shahin M.A. Cheng L. State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization Geomicrobiol. J. 2017 34 524 537 10.1080/01490451.2016.1225866
Centeno Dias F. Borges I. Duarte S.O. Monteiro G.A. Cardoso R. Comparison of experimental techniques for biocementation of sands considering homogeneous volume distribution of precipitated calcium carbonate E3S Web of Conferences EDP Sciences Les Ulis, France 2020 Volume 195 10.1051/e3sconf/202019505004
Terzis D. Hicher P. Laloui L. Benefits and drawbacks of applied direct currents for soil improvement via carbonate mineralization E3S Web of Conferences EDP Sciences Les Ulis, France 2020 Volume 195 10.1051/e3sconf/202019505007
Zhao Q. Li L. Li C. Li M. Amini F. Zhang H. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease J. Mater. Civ. Eng. 2014 26 4014094 10.1061/(ASCE)MT.1943-5533.0001013
Wen K. Li Y. Liu S. Bu C. Li L. Development of an Improved Immersing Method to Enhance Microbial Induced Calcite Precipitation Treated Sandy Soil through Multiple Treatments in Low Cementation Media Concentration Geotech. Geol. Eng. 2019 37 1015 1027 10.1007/s10706-018-0669-6
Wichtmann T. Triantafyllidis T. An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: Part I—Tests with monotonic loading and stress cycles Acta Geotech. 2016 11 739 761 10.1007/s11440-015-0402-z
Wichtmann T. Triantafyllidis T. An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: Part II—Tests with strain cycles and combined loading Acta Geotech. 2016 11 763 774 10.1007/s11440-015-0412-x
Zwietering M.H. Jongenburger I. Rombouts F.M. Van’t Riet K. Modeling of the bacterial growth curve Appl. Environ. Microbiol. 1990 56 1875 1881 10.1128/aem.56.6.1875-1881.1990
Cui M.J. Zheng J.J. Zhang R.J. Lai H.J. Soil bio-cementation using an improved 2-step injection method Arab. J. Geosci. 2020 13 10.1007/s12517-020-06168-y
Terzis D. Bernier-Latmani R. Laloui L. Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions Geotech. Lett. 2016 6 1 8 10.1680/jgele.15.00134
ASTM Standard Test Method of Unconfined Compressive Strength of Intact Rock Core Specimens ASTM Publication West Conshohocken, PA, USA 1986
Rebata-Landa V. Microbial Activity in Sediments: Effects on Soil Behavior Ph.D. Thesis Georgia Institute of Technology Atlanta, GA, USA 2007
Li Y. Guo. Z. Yang Z. Li Y. Xu M. Experimental study on the reaction process and engineering characteristics of marine calcareous sand reinforced by eco-friendly methods Appl. Ocean. Res. 2023 138 103641 10.1016/j.apor.2023.103641
Karimian A. Hassanlourad M. Karimi G. Insight into the Properties of Surface Percolated Biocemented Sand Geomicrobiology 2020 38 138 149 10.1080/01490451.2020.1818147
Al Qabany A. Soga K. Santamarina C. Factors affecting efficiency of microbially induced calcite precipitation J. Geotech. Geoenviron. Eng. 2012 138 992 1001 10.1061/(ASCE)GT.1943-5606.0000666
Lai H.J. Cui M.J. Wu S.F. Yang Y. Chu J. Retarding effect of concentration of cementation solution on biocementation of soil Acta Geotech. 2021 16 1457 1472 10.1007/s11440-021-01149-1
Liu L. Chen Y. Gao Y. Liu B. Zhou Y. Li C. Effect of urease enrichment degree of multiple sources of urease on bio-cementation efficacy via enzyme-induced carbonate precipitation Can. Geotech. J. 2023 10.1139/cgj-2022-0416
Fu T. Saracho A.C. Haigh S.K. Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review Biogeotechnics 2023 1 100002 10.1016/j.bgtech.2023.100002
Chu J. Ivanov V. Naeimi M. Stabnikov V. Liu H.L. Optimization of calcium-based bioclogging and biocementation of sand Acta Geotech. 2014 9 277 285 10.1007/s11440-013-0278-8
Yang X. Xiao W. Ma G. He X. Wu H. Shi J. Mechanical Performance of Biotreated Sandy Road Bases J. Perform. Constr. Facil. 2022 36 4021111 10.1061/(ASCE)CF.1943-5509.0001671
Mujah D. Cheng L. Shahin M.A. Microstructural and Geomechanical Study on Biocemented Sand for Optimization of MICP Process J. Mater. Civ. Eng. 2019 31 04019025 10.1061/(ASCE)MT.1943-5533.0002660
Cheng L. Cord-Ruwisch R. Shahin M.A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation Can. Geotech. J. 2013 50 81 90 10.1139/cgj-2012-0023
Fang X. Yang Y. Chen Z. Liu H. Xiao Y. Shen C. Influence of Fiber Content and Length on Engineering Properties of MICP-Treated Coral Sand Geomicrobiol. J. 2020 37 582 594 10.1080/01490451.2020.1743392
Basu A. Mishra D. Roychowdhury K. Rock failure modes under uniaxial compression, Brazilian, and point load tests Bull. Eng. Geol. Environ. 2013 72 457 475 10.1007/s10064-013-0505-4
Chakraborty S. Bisai R. Palaniappan S.K. Pal S.K. Failure modes of rocks under uniaxial compression tests: An experimental approach J. Adv. Geotech. Eng. 2019 2 1 8
Yu T. Souli H. Pechaud Y. Fleureau J.M. Review on engineering properties of micp-treated soils Geomech. Eng. 2021 27 13 30 10.12989/gae.2021.27.1.013
Yin J. Wu J.X. Zhang K. Shahin M.A. Cheng L. Comparison between MICP-Based Bio-Cementation Versus Traditional Portland Cementation for Oil-Contaminated Soil Stabilisation Sustainability 2022 15 434 10.3390/su15010434
Rahman M.M. Hora R.N. Ahenkorah I. Beecham S. Karim M.R. Iqbal A. State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications Sustainability 2020 12 6281 10.3390/su12156281
Putra H. Yasuhara H. Erizal Sutoyo Fauzan M. Review of enzyme-induced calcite precipitation as a ground-improvement technique Infrastructures 2020 5 66 10.3390/infrastructures5080066
Mahawish A. Bouazza A. Gates W.P. Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels J. Geotech. Geoenviron. Eng. 2019 145 4019033 10.1061/(ASCE)GT.1943-5606.0002066
Hoang T. Alleman J. Cetin B. Choi S.G. Engineering properties of biocementation coarse-and fine-grained sand catalyzed by bacterial cells and bacterial enzyme J. Mater. Civ. Eng. 2020 32 4020030 10.1061/(ASCE)MT.1943-5533.0003083
Liu L. Liu H. Stuedlein A.W. Evans T.M. Xiao Y. Strength, stiffness, and microstructure characteristics of biocemented calcareous sand Can. Geotech. J. 2019 56 1502 1513 10.1139/cgj-2018-0007
Gomez M.G. Anderson C.M. DeJong J.T. Nelson D.C. Lau X.H. Stimulating in situ soil bacteria for bio-cementation of sands Proceedings of the Geo-Congress 2014: Geo-characterization and Modeling for Sustainability Atlanta, GA, USA 23–26 February 2014 1674 1682
Choi S.G. Wang K. Chu J. Properties of biocemented, fiber reinforced sand Constr. Build. Mater. 2016 120 623 629 10.1016/j.conbuildmat.2016.05.124
Danjo T. Kawasaki S. Microbially induced sand cementation method using Pararhodobacter sp. strain SO1, inspired by beachrock formation mechanism Mater. Trans. 2016 57 428 437 10.2320/matertrans.M-M2015842
Amarakoon G. Kawasaki S. Factors Affecting Sand Solidification Using MICP with Pararhodobacter sp. Mater. Trans. 2017 59 72 81 10.2320/matertrans.M-M2017849
Putra H. Yasuhara H. Kinoshita N. Neupane D. Lu C.W. Effect of magnesium as substitute material in enzyme-mediated calcite precipitation for soil-improvement technique Front. Bioeng. Biotechnol. 2016 4 37 10.3389/fbioe.2016.00037
Putra H. Yasuhara H. Kinoshita N. Hirata A. Application of magnesium to improve uniform distribution of precipitated minerals in 1-m column specimens Geomech. Eng. 2017 12 803 813 10.12989/gae.2017.12.5.803
Putra H. Yasuhara H. Kinoshita N. Applicability of natural zeolite for NH-forms removal in enzyme-mediated calcite precipitation technique Geosciences 2017 7 61 10.3390/geosciences7030061
Wang Y. Li C. Wang C. Gao Y. Improving the Erosion Resistance Performance of Pisha Sandstone Weathered Soil Using MICP Technology Crystals 2021 11 1112 10.3390/cryst11091112
Whiffin V.S. Van Paassen L.A. Harkes M.P. Microbial carbonate precipitation as a soil improvement technique Geomicrobiol. J. 2007 24 417 423 10.1080/01490450701436505
van Paassen L.A. Ghose R. van der Linden T.J.M. van der Star W.R.L. van Loosdrecht M.C.M. Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment J. Geotech. Geoenviron. Eng. 2010 136 1721 1728 10.1061/(ASCE)GT.1943-5606.0000382
Collins B.D. Sitar N. Geotechnical properties of cemented sands in steep slopes J. Geotech. Geoenviron. Eng. 2009 135 1359 1366 10.1061/(ASCE)GT.1943-5606.0000094
Liu S. Huang S. Shen Z. Lü Z. Song R. Diagenetic fluid evolution and water-rock interaction model of carbonate cements in sandstone: An example from the reservoir sandstone of the Fourth Member of the Xujiahe Formation of the Xiaoquan-Fenggu area, Sichuan Province, China Sci. China Earth Sci. 2014 57 1077 1092 10.1007/s11430-014-4851-2
Sun Z. Sun Z. Lu H. Yin X. Characteristics of carbonate cements in sandstone reservoirs: A case from Yanchang Formation, middle and southern Ordos Basin, China Pet. Explor. Dev. 2010 37 543 551 10.1016/S1876-3804(10)60054-7
McBride E.F. Quartz cement in sandstones: A review Earth-Sci. Rev. 1989 26 69 112 10.1016/0012-8252(89)90019-6
Terzis D. Laloui L. Cell-free soil bio-cementation with strength, dilatancy and fabric characterization Acta Geotech. 2019 14 639 656 10.1007/s11440-019-00764-3
Al-Thawadi S. High Strength In-Situ Biocementation of Soil by Calcite Precipitating Locally Isolated Ureolytic Bacteria Ph.D. Dissertation Murdoch University Perth, Australia 2008
Terzis D. Hicher P. Laloui L. Direct currents stimulate carbonate mineralization for soil improvement under various chemical conditions Sci. Rep. 2020 10 17014 10.1038/s41598-020-73926-z
Omoregie A.I. Palombo E.A. Ong D.E.L. Nissom P.M. A feasible scale-up production of Sporosarcina pasteurii using custom-built stirred tank reactor for in-situ soil biocementation Biocatal. Agric. Biotechnol. 2020 24 101544 10.1016/j.bcab.2020.101544
Al-Thawadi S. Cord-Ruwisch R. Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge J. Adv. Sci. Eng. Res. 2012 2 12 26
Bosak T. Newman D.K. Microbial kinetic controls on calcite morphology in supersaturated solutions J. Sediment. Res. 2005 75 190 199 10.2110/jsr.2005.015