[en] This review highlights advancements made in anion exchange membrane (AEM) head groups, polymer structures and membrane synthesis methods. Limitations of current analytical techniques for characterizing AEMs are also discussed. AEM research is primarily driven by the need to develop suitable AEMs for the high-pH and high-temperature environments in anion exchange membrane fuel cells and anion exchange membrane water electrolysis applications. AEM head groups can be broadly classified as nitrogen based (e.g. quaternary ammonium), nitrogen free (e.g. phosphonium) and metal cations (e.g. ruthenium). Metal cation head groups show great promise for AEM due to their high stability and high valency. Through “rational polymer architecture”, it is possible to synthesize AEMs with ion channels and improved chemical stability. Heterogeneous membranes using porous supports or inorganic nanoparticles show great promise due to the ability to tune membrane characteristics based on the ratio of polymer to porous support or nanoparticles. Future research should investigate consolidating advancements in AEM head groups with an optimized polymer structure in heterogeneous membranes to bring together the valuable characteristics gained from using head groups with improved chemical stability, with the benefits of a polymer structure with ion channels and improved membrane properties from using a porous support or nanoparticles.
Disciplines :
Ingénierie chimique
Auteur, co-auteur :
Hagesteijn, Kimberly F. L. ; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom
Jiang, Shanxue ; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom
LADEWIG, Bradley Paul ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A review of the synthesis and characterization of anion exchange membranes
B.P.L. gratefully acknowledges financial support from Imperial College London (ICL). S.J. gratefully acknowledges financial support from the Department of Chemical Engineering at ICL. K.F.L.H. gratefully acknowledges financial support from the Department of Chemical Engineering at ICL and Statoil.
Peterson DS (2014) Ion exchange membranes. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, Boston, MA
Varcoe JR, Atanassov P, Dekel DR et al (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7:3135–3191. 10.1039/C4EE01303D
Xu T (2005) Ion exchange membranes: state of their development and perspective. J Membr Sci 263:1–29. 10.1016/j.memsci.2005.05.002
Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264:268–288. 10.1016/j.desal.2010.04.069
Ran J, Wu L, He Y et al (2017) Ion exchange membranes: new developments and applications. J Membr Sci 522:267–291. 10.1016/j.memsci.2016.09.033
Strathmann H, Grabowski A, Eigenberger G (2013) Ion-exchange membranes in the chemical process industry. Ind Eng Chem Res 52:10364–10379. 10.1021/ie4002102
Ben Hamouda S, Touati K, Ben Amor M (2012) Donnan dialysis as membrane process for nitrate removal from drinking water: membrane structure effect. Arab J Chem. 10.1016/j.arabjc.2012.07.035
Rozanska A, Wisniewski J, Winnicki T (2006) Donnan dialysis with anion-exchange membranes in a water desalination system. Desalination 198:236–246. 10.1016/j.desal.2006.02.006
Akretche DE, Kerdjoudj H (2000) Donnan dialysis of copper, gold and silver cyanides with various anion exchange membranes. Talanta 51:281–289. 10.1016/S0039-9140(99)00261-1
Fonseca AD, Crespo JG, Almeida JS, Reis MA (2000) Drinking water denitrification using a novel ion-exchange membrane bioreactor. Environ Sci Technol 34:1557–1562. 10.1021/es9910762
Fox S, Oren Y, Ronen Z, Gilron J (2014) Ion exchange membrane bioreactor for treating groundwater contaminated with high perchlorate concentrations. J Hazard Mater 264:552–559. 10.1016/j.jhazmat.2013.10.050
Matos CT, Sequeira AM, Velizarov S, Reis MA (2009) Nitrate removal in a closed marine system through the ion exchange membrane bioreactor. J Hazard Mater 166:428–434. 10.1016/j.jhazmat.2008.11.038
Vincent I, Bessarabov D (2018) Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew Sustain Energy Rev 81:1690–1704. 10.1016/j.rser.2017.05.258
Zlotorowicz A, Strand RV, Burheim OS et al (2017) The permselectivity and water transference number of ion exchange membranes in reverse electrodialysis. J Membr Sci 523:402–408. 10.1016/j.memsci.2016.10.003
Leong JX, Daud WRW, Ghasemi M et al (2013) Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review. Renew Sustain Energy Rev 28:575–587. 10.1016/j.rser.2013.08.052
Gottesfeld S, Dekel DR, Page M et al (2017) Anion exchange membrane fuel cells: current status and remaining challenges. J Power Sources 375:170–184. 10.1016/j.jpowsour.2017.08.010
Marini S, Salvi P, Nelli P et al (2012) Advanced alkaline water electrolysis. Electrochim Acta 82:384–391. 10.1016/j.electacta.2012.05.011
Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5:187–200. 10.1002/fuce.200400045
Ursua A, Gandia LM, Sanchis P (2012) Hydrogen production from water electrolysis: current status and future trends. Proc IEEE 100:410–426. 10.1109/JPROC.2011.2156750
Santos DMF, Sequeira CAC, Figueiredo JL (2013) Hydrogen production by alkaline water electrolysis. Quim Nova 36:1176–1193. 10.1590/S0100-40422013000800017
Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326. 10.1016/j.pecs.2009.11.002
Leng Y, Chen G, Mendoza AJ et al (2012) Solid-state water electrolysis with an alkaline membrane. J Am Chem Soc 134:9054–9057. 10.1021/ja302439z
Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450. 10.1016/j.jpowsour.2009.11.145
Dekel DR (2018) Review of cell performance in anion exchange membrane fuel cells. J Power Sources 375:158–169. 10.1016/j.jpowsour.2017.07.117
Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrog Energy 38:4901–4934. 10.1016/j.ijhydene.2013.01.151
Sone Y (1996) Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. J Electrochem Soc 143:1254–1259. 10.1149/1.1836625
Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 377:1–35. 10.1016/j.memsci.2011.04.043
Zheng Y, Ash U, Pandey RP et al (2018) Water uptake study of anion exchange membranes. Macromolecules. 10.1021/acs.macromol.8b00034
Li Z, He X, Jiang Z et al (2017) Enhancing hydroxide conductivity and stability of anion exchange membrane by blending quaternary ammonium functionalized polymers. Electrochim Acta 240:486–494. 10.1016/j.electacta.2017.04.109
Ziv N, Dekel DR (2018) A practical method for measuring the true hydroxide conductivity of anion exchange membranes. Electrochem Commun 88:109–113. 10.1016/j.elecom.2018.01.021
Dekel DR, Rasin IG, Page M, Brandon S (2018) Steady state and transient simulation of anion exchange membrane fuel cells. J Power Sources 375:191–204. 10.1016/j.jpowsour.2017.07.012
Seh ZW, Kibsgaard J, Dickens CF et al (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:eaad4998. 10.1126/science.aad4998
Seitz LC, Hersbach TJP, Nordlund D, Jaramillo TF (2015) Enhancement effect of noble metals on manganese oxide for the oxygen evolution reaction. J Phys Chem Lett 6:4178–4183. 10.1021/acs.jpclett.5b01928
Huo S, Deng H, Chang Y, Jiao K (2012) Water management in alkaline anion exchange membrane fuel cell anode. Int J Hydrog Energy 37:18389–18402. 10.1016/j.ijhydene.2012.09.074
Spiegel C (2007) Designing and building fuel cells. McGraw Hill Professional, New York
Ayers KE, Anderson EB, Capuano C et al (2010) Research Advances towards low cost, high efficiency PEM electrolysis. ECS Trans 33:3–15
Slade RCT, Kizewski JP, Poynton SD et al (2012) Encyclopedia of sustainability science and technology. 10.1007/978-1-4419-0851-3
Ziv N, Mustain WE, Dekel DR (2018) Review of ambient CO2 effect on anion exchange membranes fuel cells. Chemsuschem. 10.1002/cssc.201702330
Parrondo J, Arges CG, Niedzwiecki M et al (2014) Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis. RSC Adv 4:9875–9879. 10.1039/c3ra46630b
Katayama Y, Yamauchi K, Hayashi K et al (2017) Anion-exchange membrane fuel cells with improved CO2 tolerance: impact of chemically induced bicarbonate ion consumption. ACS Appl Mater Interfaces 9:28650–28658. 10.1021/acsami.7b09877
Marino MG, Melchior JP, Wohlfarth A, Kreuer KD (2014) Hydroxide, halide and water transport in a model anion exchange membrane. J Membr Sci 464:61–71. 10.1016/j.memsci.2014.04.003
Suzuki S, Muroyama H, Matsui T, Eguchi K (2013) Influence of CO2 dissolution into anion exchange membrane on fuel cell performance. Electrochim Acta 88:552–558. 10.1016/j.electacta.2012.10.105
Krewer U, Weinzierl C, Ziv N, Dekel DR (2018) Impact of carbonation processes in anion exchange membrane fuel cells. Electrochim Acta 263:433–446. 10.1016/j.electacta.2017.12.093
Hickner MA, Herring AM, Coughlin EB (2013) Anion exchange membranes: current status and moving forward. J Polym Sci Part B: Polym Phys 51:1727–1735. 10.1002/polb.23395
Couture G, Alaaeddine A, Boschet F, Ameduri B (2011) Polymeric materials as anion-exchange membranes for alkaline fuel cells. Prog Polym Sci 36:1521–1557. 10.1016/j.progpolymsci.2011.04.004
Ponce-González J, Whelligan DK, Wang L et al (2016) High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes. Energy Environ Sci 9:3724–3735. 10.1039/C6EE01958G
Dai P, Mo Z-H, Xu R-W et al (2016) Development of a cross-linked quaternized poly(styrene-b-isobutylene-b-styrene)/graphene oxide composite anion exchange membrane for direct alkaline methanol fuel cell application. RSC Adv 6:52122–52130. 10.1039/C6RA08037E
Wang J, He G, Wu X et al (2014) Crosslinked poly (ether ether ketone) hydroxide exchange membranes with improved conductivity. J Membr Sci 459:86–95. 10.1016/j.memsci.2014.01.068
Lin X, Liang X, Poynton SD et al (2013) Novel alkaline anion exchange membranes containing pendant benzimidazolium groups for alkaline fuel cells. J Membr Sci 443:193–200. 10.1016/j.memsci.2013.04.059
Wang J, Gu S, Kaspar RB et al (2013) Stabilizing the imidazolium cation in hydroxide-exchange membranes for fuel cells. Chemsuschem 6:2079–2082. 10.1002/cssc.201300285
Guo D, Lai AN, Lin CX et al (2016) Imidazolium-functionalized poly(arylene ether sulfone) anion-exchange membranes densely grafted with flexible side chains for fuel cells. ACS Appl Mater Interfaces 8:25279–25288. 10.1021/acsami.6b07711
Li Z, Zhang Y, Cao T et al (2017) Highly conductive alkaline anion exchange membrane containing imidazolium-functionalized octaphenyl polyhedral oligomeric silsesquioxane filler. J Membr Sci 541:474–482. 10.1016/j.memsci.2017.07.037
Zhang Q, Li S, Zhang S (2010) A novel guanidinium grafted poly(aryl ether sulfone) for high-performance hydroxide exchange membranes. Chem Commun 46:7495–7497. 10.1039/c0cc01834a
Liu L, Li Q, Dai J et al (2014) A facile strategy for the synthesis of guanidinium-functionalized polymer as alkaline anion exchange membrane with improved alkaline stability. J Membr Sci 453:52–60. 10.1016/j.memsci.2013.10.054
Li Y, Xu T, Gong M (2006) Fundamental studies of a new series of anion exchange membranes: membranes prepared from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) and pyridine. J Membr Sci 279:200–208. 10.1016/j.memsci.2005.12.006
Sata T, Yamane Y, Matsusaki K (1998) Preparation and properties of anion exchange membranes having pyridinium or pyridinium derivatives as anion exchange groups. J Polym Sci Part A Polym Chem 36:49–58. 10.1002/(SICI)1099-0518(19980115)36:1%3C49::AID-POLA8%3E3.0.CO;2-X
Gu S, Cai R, Yan Y (2011) Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes. Chem Commun 47:2856–2858. 10.1039/c0cc04335d
Noonan KJT, Hugar KM, Kostalik HA et al (2012) Phosphonium-functionalized polyethylene: a new class of base-stable alkaline anion exchange membranes. J Am Chem Soc 134:18161–18164. 10.1021/ja307466s
Zhang B, Gu S, Wang J et al (2012) Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes. RSC Adv 2:12683–12685. 10.1039/c2ra21402d
Hossain MA, Jang H, Sutradhar SC et al (2016) Novel hydroxide conducting sulfonium-based anion exchange membrane for alkaline fuel cell applications. Int J Hydrog Energy 41:10458–10465. 10.1016/j.ijhydene.2016.01.051
Zha Y, Disabb-Miller ML, Johnson ZD et al (2012) Metal-cation-based anion exchange membranes. J Am Chem Soc 134:4493–4496. 10.1021/ja211365r
Kwasny MT, Tew GN (2017) Expanding metal cation options in polymeric anion exchange membranes. J Mater Chem A 5:1400–1405. 10.1039/C6TA07990C
Pan J, Chen C, Zhuang L, Lu J (2012) Designing advanced alkaline polymer electrolytes for fuel cell applications. Acc Chem Res 45:473–481. 10.1021/ar200201x
Chempath S, Einsla BR, Pratt LR et al (2008) Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes. J Phys Chem C 112:3179–3182. 10.1021/jp7115577
Lin B, Qiu L, Lu J, Yan F (2010) Cross-linked alkaline ionic liquid-based polymer electrolytes for alkaline fuel cell applications. Chem Mater 22:6718–6725. 10.1021/cm102957g
Hugar KM, Kostalik HA, Coates W (2015) Imidazolium cations with exceptional alkaline stability: a systematic study of structure–stability relationships. J Am Chem Soc 137:8730–8737. 10.1021/jacs.5b02879
Dong H, Gu F, Li M et al (2014) Improving the alkaline stability of imidazolium cations by substitution. ChemPhysChem 15:3006–3014. 10.1002/cphc.201402262
Price SC, Williams KS, Beyer FL (2014) Relationships between structure and alkaline stability of imidazolium cations for fuel cell membrane applications. ACS Macro Lett 3:160–165. 10.1021/mz4005452
Thomas OD, Soo KJWY, Peckham TJ et al (2012) A stable hydroxide-conducting polymer. J Am Chem Soc 134:10753–10756. 10.1021/ja303067t
Sun Z, Lin B, Yan F (2017) Anion-exchange membranes for alkaline fuel-cell applications: the effects of cations. Chemsuschem. 10.1002/cssc.201701600
Heitner-Wirguin C (1996) Recent advances in perfluorinated ionomer membranes: structure, properties and applications. J Membr Sci 120:1–33
Tillet G, Boutevin B, Ameduri B (2011) Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog Polym Sci 36:191–217. 10.1016/j.progpolymsci.2010.08.003
Nuñez SA, Hickner MA (2013) Quantitative 1H NMR analysis of chemical stabilities in anion-exchange membranes. ACS Macro Lett 2:49–52. 10.1021/mz300486h
Sata T, Tsujimoto M, Yamaguchi T, Matsusaki K (1996) Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature. J Membr Sci 112:161–170. 10.1016/0376-7388(95)00292-8
Ameduri B (2009) From vinylidene fluoride (VDF) to the applications of VDF-containing copolymers: recent developments and future trends. Chem Rev 109:6632–6686. 10.1021/cr800187m>
Miyanishi S, Yamaguchi T (2016) Ether cleavage-triggered degradation of benzyl alkylammonium cations for polyethersulfone anion exchange membranes. Phys Chem Chem Phys 18:12009–12023. 10.1039/C6CP00579A
Han J, Peng H, Pan J et al (2013) Highly stable alkaline polymer electrolyte based on a poly(ether ether ketone) backbone. ACS Appl Mater Interfaces 5:13405–13411. 10.1021/am4043257
Fujimoto C, Kim DS, Hibbs M et al (2012) Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells. J Membr Sci 423–424:438–449. 10.1016/j.memsci.2012.08.045
Ponce-González J, Ouachan I, Varcoe JR, Whelligan DK (2018) Radiation-induced grafting of a butyl-spacer styrenic monomer onto ETFE: the synthesis of the most alkali stable radiation-grafted anion-exchange membrane to date. J Mater Chem A. 10.1039/C7TA10222D
Zhu L, Pan J, Wang Y et al (2016) Multication side chain anion exchange membranes. Macromolecules 49:815–824. 10.1021/acs.macromol.5b02671
Han J, Liu Q, Li X et al (2015) An effective approach for alleviating cation-induced backbone degradation in aromatic ether-based alkaline polymer electrolytes. ACS Appl Mater Interfaces 7:2809–2816. 10.1021/am508009z
Ran J, Wu L, Wei B et al (2014) Simultaneous enhancements of conductivity and stability for anion exchange membranes (AEMs) through precise structure design. Sci Rep 4:1–5. 10.1038/srep06486
He Y, Pan J, Wu L et al (2015) A novel methodology to synthesize highly conductive anion exchange membranes. Sci Rep 5:1–7. 10.1038/srep13417
Ren X, Price SC, Jackson AC et al (2014) Highly conductive anion exchange membrane for high power density fuel-cell performance. ACS Appl Mater Interfaces 6:13330–13333. 10.1021/am503870g
Chen D, Hickner MA (2013) Ion clustering in quaternary ammonium functionalized benzylmethyl containing poly(arylene ether ketone)s. Macromolecules 46:9270–9278. 10.1021/ma401620m
Pan J, Chen C, Li Y et al (2014) Constructing ionic highway in alkaline polymer electrolytes. Energy Environ Sci 7:354–360. 10.1039/C3EE43275K
Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions. III. An analysis based on the mayer ionic solution theory. J Chem Phys 51:3249–3252. 10.1063/1.1672502
Kamcev J, Paul DR, Freeman BD (2015) Ion activity coefficients in ion exchange polymers: applicability of Manning’s counterion condensation theory. Macromolecules 48:8011–8024. 10.1021/acs.macromol.5b01654
Muthukumar M (2004) Theory of counter-ion condensation on flexible polyelectrolytes: adsorption mechanism. J Chem Phys 120:9343–9350. 10.1063/1.1701839
Rivas BL, Moreno-Villoslada I (1998) Binding of Cd2+ and Na+ ions by poly(sodium 4-styrenesulfonate) analyzed by ultrafiltration and its relation with the counterion condensation theory. J Phys Chem B 102:6994–6999. 10.1021/jp980941m
Beers KM, Hallinan DT, Wang X et al (2011) Counterion condensation in Nafion. Macromolecules 44:8866–8870. 10.1021/ma2015084
Qaisrani NA, Ma Y, Ma L et al (2018) Facile and green fabrication of polybenzoxazine-based composite anion-exchange membranes with a self-cross-linked structure. Ionics (Kiel). 10.1007/s11581-017-2433-y
Pandey AK, Childs RF, West M et al (2001) Formation of pore-filled ion-exchange membranes within situ crosslinking: poly(vinylbenzyl ammonium salt)-filled membranes. J Polym Sci Part A Polym Chem 39:807–820. 10.1002/1099-0518(20010315)39:6%3C807::AID-POLA1054%3E3.0.CO;2-2.
Kuzume A, Miki Y, Ito M (2013) Characterisation of PAMPS–PSS pore-filling membrane for direct methanol fuel cell. J Membr Sci 446:92–98. 10.1016/j.memsci.2013.06.032
Lee M-S, Kim T, Park S-H et al (2012) A highly durable cross-linked hydroxide ion conducting pore-filling membrane. J Mater Chem 22:13928–13931. 10.1039/c2jm32628k
Maurya S, Shin S, Kim M et al (2013) Stability of composite anion exchange membranes with various functional groups and their performance for energy conversion. J Membr Sci 443:28–35. 10.1016/j.memsci.2013.04.035
Yamaguchi T, Miyata F, Nakao SI (2003) Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell. J Membr Sci 214:283–292. 10.1016/S0376-7388(02)00579-3
Jiang S, Ladewig BP (2017) High ion-exchange capacity semihomogeneous cation exchange membranes prepared via a novel polymerization and sulfonation approach in porous polypropylene. ACS Appl Mater Interfaces 9:38612–38620. 10.1021/acsami.7b13076
Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28:83–114. 10.1016/S0079-6700(02)00019-9
Wu Y, Wu C, Xu T, Fu Y (2009) Novel anion-exchange organic-inorganic hybrid membranes prepared through sol–gel reaction of multi-alkoxy precursors. J Membr Sci 329:236–245. 10.1016/j.memsci.2008.12.056
Bakangura E, Wu L, Ge L et al (2016) Progress in polymer science mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives. Prog Polym Sci 57:103–152. 10.1016/j.progpolymsci.2015.11.004
Laberty-Robert C, Vallé K, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005. 10.1039/c0cs00144a
Giorno L, Drioli E, Strathmann H (2016) Ion-exchange membrane characterization. In: Drioli E, Giorno L (eds) Encyclopedia of Membranes. Springer, Berlin, Heidelberg
Sata T (2007) Ion exchange membranes: preparation, characterization, modification and application. Royal Society of Chemistry, Cambridge
Karas F, Hnát J, Paidar M et al (2014) Determination of the ion-exchange capacity of anion-selective membranes. Int J Hydrog Energy 39:5054–5062. 10.1016/j.ijhydene.2014.01.074
Hong T-K, Kim M-H, Czae M-Z (2010) Determination of chlorinity of water without the use of chromate indicator. Int J Anal Chem 2010:1–7. 10.1155/2010/602939
Leng G (2002) Chromium and its compounds [MAK Value Documentation, 1992]. In: The MAK-Collection for Occupational Health and Safety. Wiley-VCH Verlag GmbH & Co. KGaA
Faraj M, Boccia M, Miller H et al (2012) New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis. Int J Hydrog Energy 37:14992–15002. 10.1016/j.ijhydene.2012.08.012
Deavin OI, Murphy S, Ong AL et al (2012) Anion-exchange membranes for alkaline polymer electrolyte fuel cells: comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head-groups. Energy Environ Sci 5:8584–8597. 10.1039/c2ee22466f
Khan MI, Luque R, Akhtar S et al (2016) Design of anion exchange membranes and electrodialysis studies for water desalination. Mater (Basel) 9:1–14. 10.3390/ma9050365
Tanaka Y (2007) Ion exchange membranes: fundamentals and applications. Elsevier, Amsterdam
Strathmann H (2004) Ion-exchange membrane separation processes. Elsevier, Amsterdam
Luo X, Wright A, Weissbach T, Holdcroft S (2018) Water permeation through anion exchange membranes. J Power Sources 375:442–451. 10.1016/j.jpowsour.2017.05.030
Park J-S, Choi J-H, Woo J-J, Moon S-H (2006) An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J Colloid Interface Sci 300:655–662. 10.1016/j.jcis.2006.04.040
Müller F, Ferreira CA, Azambuja DS et al (2014) Measuring the proton conductivity of ion-exchange membranes using electrochemical impedance spectroscopy and through-plane cell. J Phys Chem B 118:1102–1112. 10.1021/jp409675z
Wright AG, Fan J, Britton B et al (2016) Hexamethyl-p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy Environ Sci 9:2130–2142. 10.1039/C6EE00656F
Dekel DR, Amar M, Willdorf S et al (2017) Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications. Chem Mater 29:4425–4431. 10.1021/acs.chemmater.7b00958
Fang J, Yang Y, Lu X et al (2012) Cross-linked, ETFE-derived and radiation grafted membranes for anion exchange membrane fuel cell applications. Int J Hydrog Energy 37:594–602. 10.1016/j.ijhydene.2011.09.112
Stokes KK, Orlicki JA, Beyer FL (2010) RAFT polymerization and thermal behavior of trimethylphosphonium polystyrenes for anion exchange membranes. Polym Chem 2:80–82. 10.1039/C0PY00293C
Mabrouk W, Ogier L, Vidal S et al (2014) Ion exchange membranes based upon crosslinked sulfonated polyethersulfone for electrochemical applications. J Membr Sci 452:263–270. 10.1016/j.memsci.2013.10.006
Narducci R, Chailan J-F, Fahs A et al (2016) Mechanical properties of anion exchange membranes by combination of tensile stress–strain tests and dynamic mechanical analysis. J Polym Sci Part B Polym Phys 54:1180–1187. 10.1002/polb.24025