Matrimid; PIM-1; carbon capture; gas separation; metal−organic framework; photoresponsive; metal-organic framework; Gas separations; Photo-responsive; Materials Science (all)
Résumé :
[en] A new generation-2 light-responsive metal-organic framework (MOF) has been successfully synthesized using Zn as the metal source and both 2-phenyldiazenyl terephthalic acid and 1,4-diazabicyclo[2.2.2]octane (DABCO) as the ligands. It was found that Zn-azo-dabco MOF (Azo-DMOF-1) exhibited a photoresponsive CO2 adsorption both in static and dynamic condition because of the presence of azobenzene functionalities from the ligand. Further application of this MOF was evaluated by incorporating it as a filler in a mixed matrix membrane for CO2/N2 gas separation. Matrimid and polymer of intrinsic microporosity-1 (PIM-1) were used as the polymer matrix. It was found that Azo-DMOF-1 could enhance both the CO2 permeability and selectivity of the pristine polymer. In particular, the Azo-DMOF-1-PIM-1 composite membranes have shown a promising performance that surpassed the 2008 Robeson Upper Bound.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Prasetya, Nicholaus; Barrer Centre, Department of Chemical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
LADEWIG, Bradley Paul ; University of Luxembourg ; Barrer Centre, Department of Chemical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
New Azo-DMOF-1 MOF as a Photoresponsive Low-Energy CO2 Adsorbent and Its Exceptional CO2/N2 Separation Performance in Mixed Matrix Membranes.
N.P. acknowledges the Ph.D. scholarship funding from the Department of Chemical Engineering, Imperial College London. N.P. gratefully acknowledges Dr. Piers Gaffney for his assistance during the ligand synthesis and Marcus Cook for preparing the PIM-1, which was used in this study. The assistance of Patricia Carry and Kaho Cheung for various analytical techniques is also acknowledged.
Moon, S.-Y.; Howarth, A. J.; Wang, T.; Vermeulen, N. A.; Hupp, J. T.; Farha, O. K. A Visually Detectable pH Responsive Zirconium Metal-Organic Framework. Chem. Commun. 2016, 52, 3438-3441, 10.1039/C5CC10384C
Ma, S.; Sun, D.; Wang, X. S.; Zhou, H. C. A Mesh-Adjustable Molecular Sieve for General Use in Gas Separation. Angew. Chem., Int. Ed. 2007, 46, 2458-2462, 10.1002/anie.200604353
Li, H.; Sadiq, M. M.; Suzuki, K.; Doblin, C.; Lim, S.; Falcaro, P.; Hill, A. J.; Hill, M. R. MaLISA-a Cooperative Method to Release Adsorbed Gases from Metal-Organic Frameworks. J. Mater. Chem. A 2016, 4, 18757-18762, 10.1039/C6TA09826F
Lyndon, R.; Konstas, K.; Ladewig, B. P.; Southon, P. D.; Kepert, P. C. J.; Hill, M. R. Dynamic Photo-Switching in Metal-Organic Frameworks as a Route to Low-Energy Carbon Dioxide Capture and Release. Angew. Chem., Int. Ed. 2013, 52, 3695-3698, 10.1002/anie.201206359
Li, H.; Hill, M. R. Low-Energy CO2 Release from Metal-Organic Frameworks Triggered by External Stimuli. Acc. Chem. Res. 2017, 50, 778-786, 10.1021/acs.accounts.6b00591
Prasetya, N.; Ladewig, B. P. Dynamic Photo-switching in Light-responsive JUC-62 for CO 2 Capture. Sci. Rep. 2017, 7, 13355 10.1038/s41598-017-13536-4
Ladewig, B.; Lyndon, R.; Hill, M. Gas Separation Processes. U.S. Patent US9533282B2, 2017.
Park, J.; Yuan, D.; Pham, K. T.; Li, J.-R.; Yakovenko, A.; Zhou, H.-C. Reversible Alteration of CO2 Adsorption upon Photochemical or Thermal Treatment in a Metal-Organic Framework. J. Am. Chem. Soc. 2012, 134, 99-102, 10.1021/ja209197f
Meng, X.; Gui, B.; Yuan, D.; Zeller, M.; Wang, C. Mechanized Azobenzene-functionalized Zirconium Metal-Organic Framework for On-command Cargo Release. Sci. Adv. 2016, 2, e1600480 10.1126/sciadv.1600480
Li, H.; Martinez, M. R.; Perry, Z.; Zhou, H. C.; Falcaro, P.; Doblin, C.; Lim, S.; Hill, A. J.; Halstead, B.; Hill, M. R. A Robust Metal-Organic Framework for Dynamic Light-Induced Swing Adsorption of Carbon Dioxide. Chem.-Eur. J. 2016, 22, 11176-11179, 10.1002/chem.201602671
Dybtsev, D. N.; Chun, H.; Kim, K. Rigid and Flexible: A Highly Porous Metal-Organic Framework with Unusual Guest-Dependent Dynamic Behavior. Angew. Chem., Int. Ed. 2004, 43, 5033-5036, 10.1002/anie.200460712
Liu, J.; Lee, J. Y.; Pan, L.; Obermyer, R. T.; Simizu, S.; Zande, B.; Li, J.; Sankar, S.; Johnson, J. K. Adsorption and Diffusion of Hydrogen in a New Metal- Organic Framework Material:[Zn (bdc)(ted) 0.5]. J. Phys. Chem. C 2008, 112, 2911-2917, 10.1021/jp710011b
Xie, K.; He, Y.; Zhao, Q.; Shang, J.; Gu, Q.; Qiao, G. G.; Webley, P. A. Pd (0) Loaded Zn 2 (azoBDC) 2 (dabco) as a Heterogeneous Catalyst. CrystEngComm 2017, 19, 4182-4186, 10.1039/C6CE02447E
Savonnet, M.; Bazer-Bachi, D.; Bats, N.; Perez-Pellitero, J.; Jeanneau, E.; Lecocq, V.; Pinel, C.; Farrusseng, D. Generic Postfunctionalization Route from Amino-derived Metal-Organic Frameworks. J. Am. Chem. Soc. 2010, 132, 4518-4519, 10.1021/ja909613e
Wang, Z.; Cohen, S. M. Modulating Metal-Organic Frameworks to breathe: a Postsynthetic Covalent Modification Approach. J. Am. Chem. Soc. 2009, 131, 16675-16677, 10.1021/ja907742z
Wang, Z.; Tanabe, K. K.; Cohen, S. M. Accessing Postsynthetic Modification in a Series of Metal-Organic Frameworks and the Influence of Framework Topology on Reactivity. Inorg. Chem. 2009, 48, 296-306, 10.1021/ic801837t
Hahm, H.; Yoo, K.; Ha, H.; Kim, M. Aromatic Substituent Effects on the Flexibility of Metal-Organic Frameworks. Inorg. Chem. 2016, 55, 7576-7581, 10.1021/acs.inorgchem.6b00983
Henke, S.; Li, W.; Cheetham, A. K. Guest-dependent Mechanical Anisotropy in Pillared-layered Soft Porous Crystals-a Nanoindentation Study. Chem. Sci. 2014, 5, 2392-2397, 10.1039/c4sc00497c
Schneemann, A.; Takahashi, Y.; Rudolf, R.; Noro, S.-i.; Fischer, R. A. Influence of Co-Adsorbates on CO 2 Induced Phase Transition in Functionalized Pillared-layered Metal-Organic Frameworks. J. Mater. Chem. A 2016, 4, 12963-12972, 10.1039/C6TA03266D
Yanai, N.; Uemura, T.; Inoue, M.; Matsuda, R.; Fukushima, T.; Tsujimoto, M.; Isoda, S.; Kitagawa, S. Guest-to-host Transmission of Structural Changes for Stimuli-responsive Adsorption Property. J. Am. Chem. Soc. 2012, 134, 4501-4504, 10.1021/ja2115713
Müller, K.; Knebel, A.; Zhao, F.; Bléger, D.; Caro, J.; Heinke, L. Switching Thin Films of Azobenzene-Containing Metal-Organic Frameworks with Visible Light. Chem.-Eur. J. 2017, 23, 5434-5438, 10.1002/chem.201700989
Dong, G.; Li, H.; Chen, V. Challenges and Opportunities for Mixed-Matrix Membranes for Gas Separation. J. Mater. Chem. A 2013, 1, 4610-4630, 10.1039/c3ta00927k
Erucar, I.; Yilmaz, G.; Keskin, S. Recent Advances in Metal-Organic Framework-Based Mixed Matrix Membranes. Chem.-Asian J. 2013, 8, 1692-1704, 10.1002/asia.201300084
Perez, E. V.; Balkus, K. J.; Ferraris, J. P.; Musselman, I. H. Mixed-Matrix Membranes Containing MOF-5 for Gas Separations. J. Membr. Sci. 2009, 328, 165-173, 10.1016/j.memsci.2008.12.006
Patel, H. A.; Je, S. H.; Park, J.; Jung, Y.; Coskun, A.; Yavuz, C. T. Directing the Structural Features of N2-Phobic Nanoporous Covalent Organic Polymers for CO2 Capture and Separation. Chem.-Eur. J. 2014, 20, 772-780, 10.1002/chem.201303493
Patel, H. A.; Je, S. H.; Park, J.; Chen, D. P.; Jung, Y.; Yavuz, C. T.; Coskun, A. Unprecedented High-temperature CO2 Selectivity in N2-phobic Nanoporous Covalent Organic Polymers. Nat. Commun. 2013, 4, 1357 10.1038/ncomms2359
Chen, Z.; Xiang, S.; Arman, H. D.; Li, P.; Zhao, D.; Chen, B. Significantly Enhanced CO2/CH4 Separation Selectivity within a 3D Prototype Metal-Organic Framework Functionalized with OH Groups on Pore Surfaces at Room Temperature. Eur. J. Inorg. Chem. 2011, 2011, 2227-2231, 10.1002/ejic.201100034
Burtch, N. C.; Jasuja, H.; Dubbeldam, D.; Walton, K. S. Molecular-level Insight into Unusual Low Pressure CO2 Affinity in Pillared Metal-Organic Frameworks. J. Am. Chem. Soc. 2013, 135, 7172-7180, 10.1021/ja310770c
Huang, R.; Hill, M. R.; Babarao, R.; Medhekar, N. V. CO2 Adsorption in Azobenzene Functionalized Stimuli Responsive Metal-Organic Frameworks. J. Phys. Chem. C 2016, 120, 16658-16667, 10.1021/acs.jpcc.6b03541
Xiang, S.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. Microporous Metal-Organic Framework with Potential for Carbon Dioxide Capture at Ambient Conditions. Nat. Commun. 2012, 3, 954 10.1038/ncomms1956
Chaemchuen, S.; Zhou, K.; Kabir, N. A.; Chen, Y.; Ke, X.; Van Tendeloo, G.; Verpoort, F. Tuning Metal Sites of DABCO MOF for Gas Purification at Ambient Conditions. Microporous Mesoporous Mater. 2015, 201, 277-285, 10.1016/j.micromeso.2014.09.038
Liang, Z.; Marshall, M.; Chaffee, A. L. CO2 Adsorption-based Separation by Metal Organic Framework (Cu-BTC) Versus Zeolite (13X). Energy Fuels 2009, 23, 2785-2789, 10.1021/ef800938e
Arab, P.; Parrish, E.; Islamoǧlu, T.; El-Kaderi, H. M. Synthesis and Evaluation of Porous Azo-linked Polymers for Carbon Dioxide Capture and Separation. J. Mater. Chem. A 2015, 3, 20586-20594, 10.1039/C5TA04308E
Prasetya, N.; Teck, A. A.; Ladewig, B. P. Matrimid-JUC-62 and Matrimid-PCN-250 Mixed Matrix Membranes Displaying Light-responsive Gas Separation and Beneficial Ageing Characteristics for CO 2/N 2 Separation. Sci. Rep. 2018, 8, 2944 10.1038/s41598-018-21263-7
Prasetya, N.; Donose, B. C.; Ladewig, B. P. A New and Highly Robust Light-responsive Azo-UiO-66 for Highly Selective and Low Energy Post-combustion CO 2 Capture and its Application in a Mixed Matrix Membrane for CO 2/N 2 Separation. J. Mater. Chem. A 2018, 6, 16390-16402, 10.1039/C8TA03553A
Valero, M.; Zornoza, B.; Téllez, C.; Coronas, J. Mixed Matrix Membranes for Gas separation by Combination of Silica MCM-41 and MOF NH2-MIL-53 (Al) in Glassy Polymers. Microporous Mesoporous Mater. 2014, 192, 23-28, 10.1016/j.micromeso.2013.09.018
Ahn, J.; Chung, W.-J.; Pinnau, I.; Song, J.; Du, N.; Robertson, G. P.; Guiver, M. D. Gas Transport Behavior of Mixed-Matrix Membranes Composed of Silica Nanoparticles in a Polymer of Intrinsic Microporosity (PIM-1). J. Membr. Sci. 2010, 346, 280-287, 10.1016/j.memsci.2009.09.047
Staiger, C. L.; Pas, S. J.; Hill, A. J.; Cornelius, C. J. Gas Separation, Free Volume Distribution, and Physical Aging of a Highly Microporous Spirobisindane Polymer. Chem. Mater. 2008, 20, 2606-2608, 10.1021/cm071722t
Dorosti, F.; Omidkhah, M.; Abedini, R. Fabrication and Characterization of Matrimid/MIL-53 Mixed Matrix Membrane for CO2/CH4 Separation. Chem. Eng. Res. Des. 2014, 92, 2439-2448, 10.1016/j.cherd.2014.02.018
Robeson, L. M. The Upper Bound Revisited. J. Membr. Sci. 2008, 320, 390-400, 10.1016/j.memsci.2008.04.030
Lasseuguette, E.; Ferrari, M.-C.; Brandani, S. Humidity Impact on the Gas Permeability of PIM-1 Membrane for Post-combustion Application. Energy Procedia 2014, 63, 194-201, 10.1016/j.egypro.2014.11.020
Kinoshita, Y.; Wakimoto, K.; Gibbons, A. H.; Isfahani, A. P.; Kusuda, H.; Sivaniah, E.; Ghalei, B. Enhanced PIM-1 Membrane Gas Separation Selectivity through Efficient Dispersion of Functionalized POSS Fillers. J. Membr. Sci. 2017, 539, 178-186, 10.1016/j.memsci.2017.05.072
Ghalei, B.; Sakurai, K.; Kinoshita, Y.; Wakimoto, K.; Isfahani, A. P.; Song, Q.; Doitomi, K.; Furukawa, S.; Hirao, H.; Kusuda, H. et al. Enhanced Selectivity in Mixed Matrix Membranes for CO 2 Capture through Efficient Dispersion of Amine-functionalized MOF Nanoparticles. Nat. Energy 2017, 2, 17086 10.1038/nenergy.2017.86
Scholes, C. A.; Jin, J.; Stevens, G. W.; Kentish, S. E. Hydrocarbon Solubility, Permeability, and Competitive Sorption Effects in Polymer of Intrinsic Microporosity (PIM-1) Membranes. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 397-404, 10.1002/polb.23900
Fritsch, D.; Peinemann, K.-v.; Gomes, D. D. F. Composite Material, in Particular Composite Membrane, and Process for the Production of the Same. U.S. Patent US7658784B2, 2010.
Dechnik, J.; Sumby, C. J.; Janiak, C. Enhancing Mixed-Matrix Membrane Performance with Metal-Organic Framework Additives. Cryst. Growth Des. 2017, 17, 4467-4488, 10.1021/acs.cgd.7b00595
Song, Q.; Nataraj, S.; Roussenova, M. V.; Tan, J. C.; Hughes, D. J.; Li, W.; Bourgoin, P.; Alam, M. A.; Cheetham, A. K.; Al-Muhtaseb, S. A.; Sivaniah, E. Zeolitic Imidazolate Framework (ZIF-8) Based Polymer Nanocomposite Membranes for Gas Separation. Energy Environ. Sci. 2012, 5, 8359-8369, 10.1039/c2ee21996d
Zhang, Y.; Musselman, I. H.; Ferraris, J. P.; Balkus, K. J. Gas Permeability Properties of Matrimid Membranes Containing the Metal-Organic Framework Cu-BPY-HFS. J. Membr. Sci. 2008, 313, 170-181, 10.1016/j.memsci.2008.01.005
Erucar, I.; Keskin, S. Separation of CO2 Mixtures Using Zn (BDC)(TED) 0.5 Membranes and Composites: A Molecular Simulation Study. J. Phys. Chem. C 2011, 115, 13637-13644, 10.1021/jp203522u
Sumer, Z.; Keskin, S. Computational Screening of MOF-Based Mixed Matrix Membranes for CO2/N2 Separations. J. Nanomater. 2016, 2016, 1-12, 10.1155/2016/6482628
Rutherford, S.; Do, D. Review of Time Lag Permeation Technique as a Method for Characterisation of Porous Media and Membranes. Adsorption 1997, 3, 283-312, 10.1007/BF01653631
Zhao, D.; Ren, J.; Wang, Y.; Qiu, Y.; Li, H.; Hua, K.; Li, X.; Ji, J.; Deng, M. High CO2 Separation Performance of Pebax/CNTs/GTA Mixed Matrix Membranes. J. Membr. Sci. 2017, 521, 104-113, 10.1016/j.memsci.2016.08.061
Moghadam, F.; Omidkhah, M.; Vasheghani-Farahani, E.; Pedram, M.; Dorosti, F. The Effect of TiO2 Nanoparticles on Gas Transport Properties of Matrimid5218-based Mixed Matrix Membranes. Sep. Purif. Technol. 2011, 77, 128-136, 10.1016/j.seppur.2010.11.032
Cook, M.; Gaffney, P. R.; Peeva, L. G.; Livingston, A. G. Roll-to-roll Dip Coating of Three Different PIMs for Organic Solvent Nanofiltration. J. Membr. Sci. 2018, 558, 52-63, 10.1016/j.memsci.2018.04.046
Horváth, G.; Kawazoe, K. Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon. J. Chem. Eng. Jpn. 1983, 16, 470-475, 10.1252/jcej.16.470