Abstract :
[en] A new generation-2 light-responsive metal-organic framework (MOF) has been successfully synthesized using Zn as the metal source and both 2-phenyldiazenyl terephthalic acid and 1,4-diazabicyclo[2.2.2]octane (DABCO) as the ligands. It was found that Zn-azo-dabco MOF (Azo-DMOF-1) exhibited a photoresponsive CO2 adsorption both in static and dynamic condition because of the presence of azobenzene functionalities from the ligand. Further application of this MOF was evaluated by incorporating it as a filler in a mixed matrix membrane for CO2/N2 gas separation. Matrimid and polymer of intrinsic microporosity-1 (PIM-1) were used as the polymer matrix. It was found that Azo-DMOF-1 could enhance both the CO2 permeability and selectivity of the pristine polymer. In particular, the Azo-DMOF-1-PIM-1 composite membranes have shown a promising performance that surpassed the 2008 Robeson Upper Bound.
Funding text :
N.P. acknowledges the Ph.D. scholarship funding from the Department of Chemical Engineering, Imperial College London. N.P. gratefully acknowledges Dr. Piers Gaffney for his assistance during the ligand synthesis and Marcus Cook for preparing the PIM-1, which was used in this study. The assistance of Patricia Carry and Kaho Cheung for various analytical techniques is also acknowledged.
Scopus citations®
without self-citations
66