Gas permeation; Ideal selectivity; Metal-organic framework; Single crystal; ZIF-8; Ideal selectivities; Intrinsic selectivity; Metal organic framework; Microstructural features; Polycrystalline metals; Separation performance; Biochemistry; Materials Science (all); Physical and Theoretical Chemistry; Filtration and Separation; General Materials Science
Abstract :
[en] Grain boundaries are an unavoidable microstructural feature in intergrown polycrystalline metal-organic framework (MOF) membranes. They have been suspected to be less size-selective than a MOF's micropores, resulting in suboptimal separation performances – a speculation recently confirmed by transmission electron microscopy of MOF ZIF-8. Single-crystal membranes, without grain boundaries, should confine mass transport to micropores and reflect the intrinsic selectivity of the porous material. Here, we demonstrate the feasibility of fabricating single-crystal MOF membranes and directly measuring gas permeability through such a membrane using ZIF-8 as an exemplary MOF. Our single-crystal ZIF-8 membranes achieved ideal selectivities up to 28.9, 10.0, 40.1 and 3.6 for gas pairs CO2/N2, CO2/CH4, He/CH4 and CH4/N2 respectively, much higher than or reversely selective to over 20 polycrystalline ZIF-8 membranes, unequivocally proving the non-selectivity of grain boundaries. The permeability trend obtained in single-crystal membranes aligned with a force field that had been validated against multiple empirical adsorption isotherms.
Disciplines :
Chemical engineering
Author, co-author :
Chen, Chen; Barrer Centre, Department of Chemical Engineering, Imperial College London, United Kingdom
Ozcan, Aydin; Department of Chemical Engineering, University College London, United Kingdom
Yazaydin, A. Ozgur; Department of Chemical Engineering, University College London, United Kingdom
LADEWIG, Bradley Paul ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Barrer Centre, Department of Chemical Engineering, Imperial College London, United Kingdom ; Institute for Micro Process Engineering, Karlsruhe Institute of Technolog, Germany
External co-authors :
yes
Language :
English
Title :
Gas permeation through single-crystal ZIF-8 membranes
Batten, S.R., Champness, N.R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Paik Suh, M., Reedijk, J., Terminology of metal–organic frameworks and coordination polymers (IUPAC recommendations 2013). Pure Appl. Chem., 85, 2013.
Yaghi, O.M., O'Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., Kim, J., Reticular synthesis and the design of new materials. Nature 423 (2003), 705–714.
Park, K.S., Ni, Z., Côté, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O'Keeffe, M., Yaghi, O.M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103 (2006), 10186–10191.
Deng, H., Grunder, S., Cordova, K.E., Valente, C., Furukawa, H., Hmadeh, M., Gándara, F., Whalley, A.C., Liu, Z., Asahina, S., Kazumori, H., O'Keeffe, M., Terasaki, O., Stoddart, J.F., Yaghi, O.M., Large-pore apertures in a series of metal-organic frameworks. Science 336 (2012), 1018–1023.
Furukawa, H., Cordova, K.E., O'Keeffe, M., Yaghi, O.M., The chemistry and applications of metal-organic frameworks. Science, 341, 2013.
Ramu, G., Lee, M., Jeong, H.K., Effects of zinc salts on the microstructure and performance of zeolitic-imidazolate framework ZIF-8 membranes for propylene/propane separation. Microporous Mesoporous Mater. 259 (2018), 155–162.
Navarro, M., Seoane, B., Mateo, E., Lahoz, R., de la Fuente, G.F., Coronas, J., ZIF-8 micromembranes for gas separation prepared on laser-perforated brass supports. J. Mater. Chem. A 2 (2014), 11177–11184.
McCarthy, M.C., Varela-Guerrero, V., Barnett, G.V., Jeong, H.-K., Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir 26 (2010), 14636–14641.
Shekhah, O., Swaidan, R., Belmabkhout, Y., du Plessis, M., Jacobs, T., Barbour, L.J., Pinnau, I., Eddaoudi, M., The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study. Chem. Commun. 50 (2014), 2089–2092.
Pan, Y., Lai, Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem. Commun. 47 (2011), 10275–10277.
Ameloot, R., Vermoortele, F., Vanhove, W., Roeffaers, M.B.J., Sels, B.F., De Vos, D.E., Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability. Nat. Chem., 3, 2011, 382.
Shekhah, O., Eddaoudi, M., The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces. Chem. Commun. 49 (2013), 10079–10081.
Kwon, H.T., Jeong, H.-K., Lee, A.S., An, H.S., Lee, T., Jang, E., Lee, J.S., Choi, J., Defect-induced ripening of zeolitic-imidazolate framework ZIF-8 and its implication to vapor-phase membrane synthesis. Chem. Commun. 52 (2016), 11669–11672.
Qiu, S., Xue, M., Zhu, G., Metal-organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 43 (2014), 6116–6140.
Takamizawa, S., Takasaki, Y., Miyake, R., Single-crystal membrane for anisotropic and efficient gas permeation. J. Am. Chem. Soc. 132 (2010), 2862–2863.
Li, Y.-S., Liang, F.-Y., Bux, H., Feldhoff, A., Yang, W.-S., Caro, J., Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity. Angew. Chem. Int. Ed. 49 (2010), 548–551.
Zhu, Y., Ciston, J., Zheng, B., Miao, X., Czarnik, C., Pan, Y., Sougrat, R., Lai, Z., Hsiung, C.E., Yao, K., Pinnau, I., Pan, M., Han, Y., Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat. Mater. 16 (2017), 532–536.
Liu, B., Metal-organic framework-based devices: separation and sensors. J. Mater. Chem. 22 (2012), 10094–10101.
Kadioglu, O., Keskin, S., Efficient separation of helium from methane using MOF membranes. Sep. Purif. Technol. 191 (2018), 192–199.
Yilmaz, G., Ozcan, A., Keskin, S., Computational screening of ZIFs for CO2 separations. Mol. Simul. 41 (2015), 713–726.
Atci, E., Erucar, I., Keskin, S., Adsorption and transport of CH4, CO2, H2 mixtures in a Bio-MOF material from molecular simulations. J. Phys. Chem. C 115 (2011), 6833–6840.
Chmelik, C., Characteristic features of molecular transport in MOF ZIF-8 as revealed by IR microimaging. Microporous Mesoporous Mater. 216 (2015), 138–145.
Hwang, S., Semino, R., Seoane, B., Zahan, M., Chmelik, C., Valiullin, R., Bertmer, M., Haase, J., Kapteijn, F., Gascon, J., Maurin, G., Karger, J., Revealing the transient concentration of CO2 in a mixed-matrix membrane by ir microimaging and molecular modeling. Angew. Chem. Int. Ed. Engl. 57 (2018), 5156–5160.
Zhang, C., Lively, R.P., Zhang, K., Johnson, J.R., Karvan, O., Koros, W.J., Unexpected molecular sieving properties of zeolitic imidazolate framework-8. J. Phys. Chem. Lett. 3 (2012), 2130–2134.
Lewis, J.E., Gavalas, G.R., Davis, M.E., Permeation studies on oriented single-crystal ferrierite membranes. AlChE J. 43 (1997), 83–90.
Shah, D.B., Liou, H.Y., Time-lag measurements for diffusion of aromatics through a silicalite membrane. Zeolites 14 (1994), 541–548.
Wernick, D.L., Osterhuber, E.J., Permeation through a single crystal of zeolite NaX. J. Membr. Sci. 22 (1985), 137–146.
Geus, E.R., Jansen, A.E., Jansen, J.C., Schoonman, J., van Bekkum, H., Permeability studies on a silicalite single crystal membrane model. Stud. Surf. Sci. Catal. 65 (1991), 457–466.
Takasaki, Y., Takamizawa, S., Gas permeation in a molecular crystal and space expansion. J. Am. Chem. Soc. 136 (2014), 6806–6809.
Takasaki, Y., Takamizawa, S., A preferable molecular crystal membrane for H2 gas separation. Chem. Commun. 50 (2014), 5662–5664.
Chmelik, C., Bux, H., Caro, J., Heinke, L., Hibbe, F., Titze, T., Kärger, J., Mass transfer in a nanoscale material enhanced by an opposing flux. Phys. Rev. Lett., 104, 2010, 085902.
Cravillon, J., Nayuk, R., Springer, S., Feldhoff, A., Huber, K., Wiebcke, M., Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 23 (2011), 2130–2141.
Cravillon, J., Schroder, C.A., Bux, H., Rothkirch, A., Caro, J., Wiebcke, M., Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm 14 (2012), 492–498.
Pusch, A.-K., Splith, T., Moschkowitz, L., Karmakar, S., Biniwale, R., Sant, M., Suffritti, G.B., Demontis, P., Cravillon, J., Pantatosaki, E., Stallmach, F., NMR studies of carbon dioxide and methane self-diffusion in ZIF-8 at elevated gas pressures. Adsorption 18 (2012), 359–366.
Zhang, K., Lively, R.P., Zhang, C., Koros, W.J., Chance, R.R., Investigating the intrinsic ethanol/water separation capability of ZIF-8: an adsorption and diffusion study. J. Phys. Chem. C 117 (2013), 7214–7225.
Bux, H., Chmelik, C., van Baten, J.M., Krishna, R., Caro, J., Novel MOF-membrane for molecular sieving predicted by IR-diffusion studies and molecular modeling. Adv. Mater. 22 (2010), 4741–4743.
Chmelik, C., van Baten, J., Krishna, R., Hindering effects in diffusion of CO2/CH4 mixtures in ZIF-8 crystals. J. Membr. Sci. 397–398 (2012), 87–91.
Anderson, M.W., Gebbie-Rayet, J.T., Hill, A.R., Farida, N., Attfield, M.P., Cubillas, P., Blatov, V.A., Proserpio, D.M., Akporiaye, D., Arstad, B., Gale, J.D., Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature 544 (2017), 456–459.
Sumer, Z., Keskin, S., Adsorption- and membrane-based CH4/N2 separation performances of MOFs. Ind. Eng. Chem. Res. 56 (2017), 8713–8722.
Cao, F., Zhang, C., Xiao, Y., Huang, H., Zhang, W., Liu, D., Zhong, C., Yang, Q., Yang, Z., Lu, X., Helium recovery by a Cu-BTC metal–organic-framework membrane. Ind. Eng. Chem. Res. 51 (2012), 11274–11278.
Yu, J., Xie, L.-H., Li, J.-R., Ma, Y., Seminario, J.M., Balbuena, P.B., CO2 capture and separations using MOFs: computational and experimental studies. Chem. Rev. 117 (2017), 9674–9754.
Schejn, A., Balan, L., Falk, V., Aranda, L., Medjahdi, G., Schneider, R., Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm 16 (2014), 4493–4500.
Sheng, L., Yang, F., Wang, C., Yu, J., Zhang, L., Pan, Y., Comparison of the hydrothermal stability of ZIF-8 nanocrystals and polycrystalline membranes derived from zinc salt variations. Mater. Lett. 197 (2017), 184–187.
Bustamante, E.L., Fernández, J.L., Zamaro, J.M., Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J. Colloid Interface Sci. 424 (2014), 37–43.
Pan, Y., Liu, Y., Zeng, G., Zhao, L., Lai, Z., Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 47 (2011), 2071–2073.
Feng, X., Wu, T., Carreon, M.A., Synthesis of ZIF-67 and ZIF-8 crystals using DMSO (Dimethyl Sulfoxide) as solvent and kinetic transformation studies. J. Cryst. Growth 455 (2016), 152–156.
Watanabe, S., Ohsaki, S., Hanafusa, T., Takada, K., Tanaka, H., Mae, K., Miyahara, M.T., Synthesis of zeolitic imidazolate framework-8 particles of controlled sizes, shapes, and gate adsorption characteristics using a central collision-type microreactor. Chem. Eng. J. 313 (2017), 724–733.
Moh, P.Y., Brenda, M., Anderson, M.W., Attfield, M.P., Crystallisation of solvothermally synthesised ZIF-8 investigated at the bulk, single crystal and surface level. CrystEngComm 15 (2013), 9672–9678.
P. Webb, C. Orr, C. Micromeritics, Instrument, Analytical methods in fine particle technology, Micromeritics Instrument Corp., Norcross, Ga, 1997.
Huang, H., Zhang, W., Liu, D., Liu, B., Chen, G., Zhong, C., Effect of temperature on gas adsorption and separation in ZIF-8: a combined experimental and molecular simulation study. Chem. Eng. Sci. 66 (2011), 6297–6305.
Bux, H., Feldhoff, A., Cravillon, J., Wiebcke, M., Li, Y.-S., Caro, J., Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chem. Mater. 23 (2011), 2262–2269.
Fairen-Jimenez, D., Moggach, S.A., Wharmby, M.T., Wright, P.A., Parsons, S., Düren, T., Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc. 133 (2011), 8900–8902.
Marti, A.M., Wickramanayake, W., Dahe, G., Sekizkardes, A., Bank, T.L., Hopkinson, D.P., Venna, S.R., Continuous flow processing of ZIF-8 membranes on polymeric porous hollow fiber supports for CO2 capture. ACS Appl. Mater. Interfaces 9 (2017), 5678–5682.
Jang, K.-S., Kim, H.-J., Johnson, J.R., Kim, W.-g., Koros, W.J., Jones, C.W., Nair, S., Modified mesoporous silica gas separation membranes on polymeric hollow fibers. Chem. Mater. 23 (2011), 3025–3028.
Liu, Y., Peng, Y., Wang, N., Li, Y., Pan, J.H., Yang, W., Caro, J., Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem 8 (2015), 3582–3586.
Huang, A., Liu, Q., Wang, N., Zhu, Y., Caro, J., Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. J. Am. Chem. Soc. 136 (2014), 14686–14689.
McEwen, J., Hayman, J.-D., Ozgur Yazaydin, A., A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite-13X and BPL activated carbon. Chem. Phys. 412 (2013), 72–76.
Battisti, A., Taioli, S., Garberoglio, G., Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: a computer simulation investigation. Microporous Mesoporous Mater. 143 (2011), 46–53.
Caro, J., Are, MOF membranes better in gas separation than those made of zeolites?. Curr. Opin. Chem. Eng. 1 (2011), 77–83.
Krishna, R., Describing the diffusion of guest molecules inside porous structures. J. Phys. Chem. C 113 (2009), 19756–19781.
Krokidas, P., Castier, M., Moncho, S., Brothers, E., Economou, I.G., Molecular simulation studies of the diffusion of methane, ethane, propane, and propylene in ZIF-8. J. Phys. Chem. C 119 (2015), 27028–27037.
Wu, X., Huang, J., Cai, W., Jaroniec, M., Force field for ZIF-8 flexible frameworks: atomistic simulation of adsorption, diffusion of pure gases as CH4, H2, CO2 and N2. RSC Adv. 4 (2014), 16503–16511.
Zhang, L., Hu, Z., Jiang, J., Sorption-induced structural transition of zeolitic imidazolate framework-8: a hybrid molecular simulation study. J. Am. Chem. Soc. 135 (2013), 3722–3728.
Zheng, B., Sant, M., Demontis, P., Suffritti, G.B., Force field for molecular dynamics computations in flexible ZIF-8 framework. J. Phys. Chem. C 116 (2012), 933–938.
Zheng, B., Sant, M., Demontis, P., Suffritti, G.B., Correction to “Force Field for Molecular Dynamics Computations in Flexible ZIF-8 Framework”. J. Phys. Chem. C, 117, 2013 (24662-24662).