CO2 adsorbents; Mixed matrix membranes; Nanoporous polymers; Photo-responsive; Photoswitching; Porous fillers; Post-combustion captures; Separation performance; Chemistry (all); Chemical Engineering (all); Industrial and Manufacturing Engineering
Résumé :
[en] Azo-COP-2 is a nanoporous polymer with exceptional CO2/N2 separation performance. In this study, we further investigate the application of Azo-COP-2 as a low-energy CO2 adsorbent and porous filler in mixed matrix membranes (MMMs) for CO2/N2 separation. As an adsorbent, the UV-irradiated Azo-COP-2 showed lower CO2 uptake than in the nonirradiated state, and Azo-COP-2 also exhibited highly efficient CO2 photoswitching between the two states. Combined with high CO2/N2 selectivity, this makes Azo-COP-2 an excellent candidate for low-energy CO2 capture and release. Azo-COP-2 is also shown to be a beneficial filler in MMMs. For polysulfone-based MMMs, the CO2 permeability and CO2/N2 selectivity could be increased up to 160% and 66.7%, respectively. The strategy shows the great potential of Azo-COP-2 not only for a low-energy CO2 adsorbent but also to improve the performance of conventional polymeric membranes for CO2 postcombustion capture.
Disciplines :
Ingénierie chimique
Auteur, co-auteur :
Li, Siyao ; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom
Prasetya, Nicholaus; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom
LADEWIG, Bradley Paul ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom ; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Investigation of Azo-COP-2 as a Photoresponsive Low-Energy CO2 Adsorbent and Porous Filler in Mixed Matrix Membranes for CO2/N2 Separation
N.P. acknowledges the Ph.D. scholarship funding from the Department of Chemical Engineering, Imperial College, London. The assistance from Dr. Piers Gaffney in synthesizing tetranitrophenylmethane is gratefully acknowledged. The authors also acknowledge Marcus Cook for providing PIM-1 used in this study. The authors also acknowledge BASF Germany and Huntsman for kindly providing polysulfone and Matrimid, respectively, which were used in this study.
Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9-10), 1051-1069, 10.1515/pac-2014-1117
James, S. L. Metal-organic frameworks. Chem. Soc. Rev. 2003, 32 (5), 276-288, 10.1039/b200393g
McKeown, N. B.; Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2006, 35 (8), 675-683, 10.1039/b600349d
Patel, H. A.; Je, S. H.; Park, J.; Chen, D. P.; Jung, Y.; Yavuz, C. T.; Coskun, A. Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nat. Commun. 2013, 4, 1357, 10.1038/ncomms2359
Jiang, Q.; Huang, H.; Tang, Y.; Zhang, Y.; Zhong, C. Highly Porous Covalent Triazine Frameworks for Reversible Iodine Capture and Efficient Removal of Dye. Ind. Eng. Chem. Res. 2018, 57 (44), 15114-15121, 10.1021/acs.iecr.8b02866
Huang, N.; Chen, X.; Krishna, R.; Jiang, D. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew. Chem., Int. Ed. 2015, 54 (10), 2986-2990, 10.1002/anie.201411262
Fang, Q.; Gu, S.; Zheng, J.; Zhuang, Z.; Qiu, S.; Yan, Y. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem. 2014, 126 (11), 2922-2926, 10.1002/ange.201310500
Mahajan, R.; Koros, W. J. Factors controlling successful formation of mixed-matrix gas separation materials. Ind. Eng. Chem. Res. 2000, 39 (8), 2692-2696, 10.1021/ie990799r
Patel, H. A.; Je, S. H.; Park, J.; Jung, Y.; Coskun, A.; Yavuz, C. T. Directing the Structural Features of N2-Phobic Nanoporous Covalent Organic Polymers for CO2 Capture and Separation. Chem.-Eur. J. 2014, 20 (3), 772-780, 10.1002/chem.201303493
Ladewig, B. P.; Lyndon, R.; Hill, M. R. The carbon sponge: squeezing out captured carbon dioxide. Carbon Manage. 2014, 5 (1), 9-11, 10.4155/cmt.13.74
Lyndon, R.; Konstas, K.; Ladewig, B. P.; Southon, P. D.; Kepert, P. C. J.; Hill, M. R. Dynamic Photo-Switching in Metal-Organic Frameworks as a Route to Low-Energy Carbon Dioxide Capture and Release. Angew. Chem., Int. Ed. 2013, 52 (13), 3695-3698, 10.1002/anie.201206359
Collet, G.; Lathion, T. e.; Besnard, C. l.; Piguet, C.; Petoud, S. p. On-Demand Degradation of Metal-Organic Framework Based on Photocleavable Dianthracene-Based Ligand. J. Am. Chem. Soc. 2018, 140 (34), 10820-10828, 10.1021/jacs.8b05047
Liu, C.; Zhang, W.; Zeng, Q.; Lei, S. A Photoresponsive Surface Covalent Organic Framework: Surface-Confined Synthesis, Isomerization, and Controlled Guest Capture and Release. Chem.-Eur. J. 2016, 22 (20), 6768-6773, 10.1002/chem.201601199
Baroncini, M.; d'Agostino, S.; Bergamini, G.; Ceroni, P.; Comotti, A.; Sozzani, P.; Bassanetti, I.; Grepioni, F.; Hernandez, T. M.; Silvi, S. et al. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. Nat. Chem. 2015, 7 (8), 634-640, 10.1038/nchem.2304
Zhu, Y.; Zhang, W. Reversible tuning of pore size and CO 2 adsorption in azobenzene functionalized porous organic polymers. Chem. Sci. 2014, 5 (12), 4957-4961, 10.1039/C4SC02305F
Rezakazemi, M.; Amooghin, A. E.; Montazer-Rahmati, M. M.; Ismail, A. F.; Matsuura, T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog. Polym. Sci. 2014, 39 (5), 817-861, 10.1016/j.progpolymsci.2014.01.003
Sun, H.; Wang, T.; Xu, Y.; Gao, W.; Li, P.; Niu, Q. J. Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in-situ polymerization for CO2 separation. Sep. Purif. Technol. 2017, 177, 327-336, 10.1016/j.seppur.2017.01.015
Park, C. H.; Tocci, E.; Fontananova, E.; Bahattab, M. A.; Aljlil, S. A.; Drioli, E. Mixed matrix membranes containing functionalized multiwalled carbon nanotubes: Mesoscale simulation and experimental approach for optimizing dispersion. J. Membr. Sci. 2016, 514, 195-209, 10.1016/j.memsci.2016.04.011
Shen, G.; Zhao, J.; Guan, K.; Shen, J.; Jin, W. Highly efficient recovery of propane by mixed-matrix membrane via embedding functionalized graphene oxide nanosheets into polydimethylsiloxane. AIChE J. 2017, 63 (8), 3501-3510, 10.1002/aic.15720
Ahmad, N.; Leo, C.; Mohammad, A.; Ahmad, A. Modification of gas selective SAPO zeolites using imidazolium ionic liquid to develop polysulfone mixed matrix membrane for CO2 gas separation. Microporous Mesoporous Mater. 2017, 244, 21-30, 10.1016/j.micromeso.2016.10.001
Ahmad, N.; Leo, C.; Mohammad, A.; Ahmad, A. Interfacial sealing and functionalization of polysulfone/SAPO-34 mixed matrix membrane using acetate-based ionic liquid in post-impregnation for CO2 capture. Sep. Purif. Technol. 2018, 197, 439-448, 10.1016/j.seppur.2017.12.054
Shahid, S.; Nijmeijer, K. Matrimid®/polysulfone blend mixed matrix membranes containing ZIF-8 nanoparticles for high pressure stability in natural gas separation. Sep. Purif. Technol. 2017, 189, 90-100, 10.1016/j.seppur.2017.07.075
Dechnik, J.; Sumby, C. J.; Janiak, C. Enhancing Mixed-Matrix Membrane Performance with Metal-Organic Framework Additives. Cryst. Growth Des. 2017, 17, 4467-4488, 10.1021/acs.cgd.7b00595
Hsieh, J. O.; Balkus, K. J.; Ferraris, J. P.; Musselman, I. H. MIL-53 frameworks in mixed-matrix membranes. Microporous Mesoporous Mater. 2014, 196, 165-174, 10.1016/j.micromeso.2014.05.006
Hu, J.; Cai, H.; Ren, H.; Wei, Y.; Xu, Z.; Liu, H.; Hu, Y. Mixed-matrix membrane hollow fibers of Cu3 (BTC) 2 MOF and polyimide for gas separation and adsorption. Ind. Eng. Chem. Res. 2010, 49 (24), 12605-12612, 10.1021/ie1014958
Wu, X.; Tian, Z.; Wang, S.; Peng, D.; Yang, L.; Wu, Y.; Xin, Q.; Wu, H.; Jiang, Z. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. J. Membr. Sci. 2017, 528, 273-283, 10.1016/j.memsci.2017.01.042
Gao, X.; Zou, X.; Ma, H.; Meng, S.; Zhu, G. Highly selective and permeable porous organic framework membrane for CO2 capture. Adv. Mater. 2014, 26 (22), 3644-3648, 10.1002/adma.201400020
Prasetya, N.; Teck, A. A.; Ladewig, B. P. Matrimid-JUC-62 and Matrimid-PCN-250 mixed matrix membranes displaying light-responsive gas separation and beneficial ageing characteristics for CO 2/N 2 separation. Sci. Rep. 2018, 8 (1), 2944, 10.1038/s41598-018-21263-7
Cook, M.; Gaffney, P. R.; Peeva, L. G.; Livingston, A. G. Roll-to-roll dip coating of three different PIMs for Organic Solvent Nanofiltration. J. Membr. Sci. 2018, 558, 52-63, 10.1016/j.memsci.2018.04.046
Prasetya, N.; Ladewig, B. P. New Azo-DMOF-1 MOF as a Photoresponsive Low-Energy CO2 Adsorbent and Its Exceptional CO2/N2 Separation Performance in Mixed Matrix Membranes. ACS Appl. Mater. Interfaces 2018, 10 (40), 34291-34301, 10.1021/acsami.8b12261
Prasetya, N.; Ladewig, B. P. Dynamic photo-switching in light-responsive JUC-62 for CO 2 capture. Sci. Rep. 2017, 7 (1), s41598-017, 10.1038/s41598-017-13536-4
Prasetya, N.; Donose, B. C.; Ladewig, B. P. A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO 2 capture and its application in a mixed matrix membrane for CO 2/N 2 separation. J. Mater. Chem. A 2018, 6 (34), 16390-16402, 10.1039/C8TA03553A
Larkin, P. General Outline and Strategies for IR and Raman Spectra Interpretation. In Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier, 2017.
Xiang, S.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 2012, 3, 954, 10.1038/ncomms1956
Dawson, R.; Adams, D. J.; Cooper, A. I. Chemical tuning of CO 2 sorption in robust nanoporous organic polymers. Chem. Sci. 2011, 2 (6), 1173-1177, 10.1039/c1sc00100k
Li, H.; Martinez, M. R.; Perry, Z.; Zhou, H.-C.; Falcaro, P.; Doblin, C.; Lim, S.; Hill, A.; Halstead, B.; Hill, M. A robust metal organic framework for dynamic light-induced swing adsorption of carbon dioxide. Chem.-Eur. J. 2016, 22, 11176, 10.1002/chem.201602671
Prasetya, N.; Ladewig, B. P. Dynamic photo-switching in light-responsive JUC-62 for CO 2 capture. Sci. Rep. 2017, 7 (1), 13355, 10.1038/s41598-017-13536-4
Park, J.; Yuan, D.; Pham, K. T.; Li, J.-R.; Yakovenko, A.; Zhou, H.-C. Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. J. Am. Chem. Soc. 2012, 134 (1), 99-102, 10.1021/ja209197f
Amooghin, A. E.; Omidkhah, M.; Kargari, A. Enhanced CO 2 transport properties of membranes by embedding nano-porous zeolite particles into Matrimid® 5218 matrix. RSC Adv. 2015, 5 (12), 8552-8565, 10.1039/C4RA14903C
Perez, E. V.; Balkus, K. J.; Ferraris, J. P.; Musselman, I. H. Mixed-matrix membranes containing MOF-5 for gas separations. J. Membr. Sci. 2009, 328 (1), 165-173, 10.1016/j.memsci.2008.12.006
Dechnik, J.; Nuhnen, A.; Janiak, C. Mixed-Matrix Membranes of the Air-Stable MOF-5 Analogue [Co4 (μ4-O)(Me2pzba) 3] with a Mixed-Functional Pyrazolate-Carboxylate Linker for CO2/CH4 Separation. Cryst. Growth Des. 2017, 17 (8), 4090-4099, 10.1021/acs.cgd.7b00202
Tessema, T. D. M.; Venna, S. R.; Dahe, G.; Hopkinson, D. P.; El-Kaderi, H. M.; Sekizkardes, A. K. Incorporation of benzimidazole linked polymers into Matrimid to yield mixed matrix membranes with enhanced CO2/N2 selectivity. J. Membr. Sci. 2018, 554, 90-96, 10.1016/j.memsci.2018.02.054
Wang, Y.; Hu, T.; Li, H.; Dong, G.; Wong, W.; Chen, V. Enhancing membrane permeability for CO2 capture through blending commodity polymers with selected PEO and PEO-PDMS copolymers and composite hollow fibres. Energy Procedia 2014, 63, 202-209, 10.1016/j.egypro.2014.11.021
Zimmerman, C. M.; Singh, A.; Koros, W. J. Tailoring mixed matrix composite membranes for gas separations. J. Membr. Sci. 1997, 137 (1-2), 145-154, 10.1016/S0376-7388(97)00194-4
Ahn, J.; Chung, W.-J.; Pinnau, I.; Guiver, M. D. Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci. 2008, 314 (1-2), 123-133, 10.1016/j.memsci.2008.01.031
Julian, H.; Sutrisna, P. D.; Hakim, A. N.; Harsono, H. O.; Hugo, Y. A.; Wenten, I. G. Nano-silica/polysulfone asymmetric mixed-matrix membranes (MMMs) with high CO2 permeance in the application of CO2/N2 separation. Polym. Plast Technol. Eng. 2019, 58, 1-12, 10.1080/03602559.2018.1520253
Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 2004, (2), 230-231, 10.1039/b311764b
Ahn, J.; Chung, W.-J.; Pinnau, I.; Song, J.; Du, N.; Robertson, G. P.; Guiver, M. D. Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). J. Membr. Sci. 2010, 346 (2), 280-287, 10.1016/j.memsci.2009.09.047
Staiger, C. L.; Pas, S. J.; Hill, A. J.; Cornelius, C. J. Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer. Chem. Mater. 2008, 20 (8), 2606-2608, 10.1021/cm071722t
Zhao, D.; Ren, J.; Wang, Y.; Qiu, Y.; Li, H.; Hua, K.; Li, X.; Ji, J.; Deng, M. High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes. J. Membr. Sci. 2017, 521, 104-113, 10.1016/j.memsci.2016.08.061
Ghalei, B.; Sakurai, K.; Kinoshita, Y.; Wakimoto, K.; Isfahani, A. P.; Song, Q.; Doitomi, K.; Furukawa, S.; Hirao, H.; Kusuda, H. et al. Enhanced selectivity in mixed matrix membranes for CO 2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat. Energy. 2017, 2 (7), 17086, 10.1038/nenergy.2017.86
Aroon, M.; Ismail, A.; Matsuura, T.; Montazer-Rahmati, M. Performance studies of mixed matrix membranes for gas separation: a review. Sep. Purif. Technol. 2010, 75 (3), 229-242, 10.1016/j.seppur.2010.08.023
Sharma, N.; Purkait, M. K. Preparation of hydrophilic polysulfone membrane using polyacrylic acid with polyvinyl pyrrolidone. J. Appl. Polym. Sci. 2015, 132 (22), n/a, 10.1002/app.41964
Ishikawa, M.; Ohzono, T.; Yamaguchi, T.; Norikane, Y. Photo-enhanced Aqueous Solubilization of an Azo-compound. Sci. Rep. 2017, 7 (1), 6909, 10.1038/s41598-017-06947-w
Gorgojo, P.; Uriel, S.; Téllez, C.; Coronas, J. Development of mixed matrix membranes based on zeolite Nu-6 (2) for gas separation. Microporous Mesoporous Mater. 2008, 115 (1-2), 85-92, 10.1016/j.micromeso.2007.11.046
Baglay, R. R.; Roth, C. B. Local glass transition temperature T g (z) of polystyrene next to different polymers: Hard vs. soft confinement. J. Chem. Phys. 2017, 146 (20), 203307, 10.1063/1.4975168
Dorosti, F.; Omidkhah, M.; Abedini, R. Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation. Chem. Eng. Res. Des. 2014, 92 (11), 2439-2448, 10.1016/j.cherd.2014.02.018
Li, P.; Chung, T.; Paul, D. Temperature dependence of gas sorption and permeation in PIM-1. J. Membr. Sci. 2014, 450, 380-388, 10.1016/j.memsci.2013.09.030
Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320 (1-2), 390-400, 10.1016/j.memsci.2008.04.030
Shan, M.; Seoane, B.; Andres-Garcia, E.; Kapteijn, F.; Gascon, J. Mixed-matrix membranes containing an azine-linked covalent organic framework: Influence of the polymeric matrix on post-combustion CO 2-capture. J. Membr. Sci. 2018, 549, 377-384, 10.1016/j.memsci.2017.12.008
Zou, C.; Li, Q.; Hua, Y.; Zhou, B.; Duan, J.; Jin, W. Mechanical Synthesis of COF Nanosheet Cluster and Its Mixed Matrix Membrane for Efficient CO2 Removal. ACS Appl. Mater. Interfaces 2017, 9 (34), 29093-29100, 10.1021/acsami.7b08032