CO2 capture and separation; DMOF-1; Metal organic framework; Physical and Theoretical Chemistry; Inorganic Chemistry; Materials Chemistry
Abstract :
[en] In this study, dabco MOF-1 (DMOF-1) with four different functional groups (NH2, NO2, Br and azobenzene) has been successfully synthesized through systematic control of the synthesis conditions. The functionalised DMOF-1 is characterized using various analytical techniques including PXRD, TGA and N2 sorption. The effect of the various functional groups on the performance of the MOFs for post-combustion CO2 capture is evaluated. DMOF-1s with polar functional groups are found to have better affinity with CO2 compared with the parent framework as indicated by higher CO2 heat of adsorption. However, imparting steric hindrance to the framework as in Azo-DMOF-1 enhances CO2/N2 selectivity, potentially as a result of lower N2 affinity for the framework.
Disciplines :
Chemical engineering
Author, co-author :
Xie, Mingrou; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom
Prasetya, Nicholaus; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom
LADEWIG, Bradley Paul ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom ; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
External co-authors :
yes
Language :
English
Title :
Systematic screening of DMOF-1 with NH2, NO2, Br and azobenzene functionalities for elucidation of carbon dioxide and nitrogen separation properties
Department of Chemical Engineering, Imperial College London
Funding text :
N.P. acknowledges the PhD scholarship funding from the Department of Chemical Engineering, Imperial College London . M. X acknowledges the UROP funding from Department of Chemical Engineering, Imperial College London.N.P. acknowledges the PhD scholarship funding from the Department of Chemical Engineering, Imperial College London. M. X acknowledges the UROP funding from Department of Chemical Engineering, Imperial College London.
Dybtsev, D.N., Chun, H., Kim, K., Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew. Chemie - Int. Ed. 43 (2004), 5033–5036, 10.1002/anie.200460712.
Henke, S., Schneemann, A., Wütscher, A., Fischer, R.A., Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. J. Am. Chem. Soc. 134 (2012), 9464–9474, 10.1021/ja302991b.
Henke, S., Schmid, R., Grunwaldt, J.-D., Fischer, R.A., Flexibility and sorption selectivity in rigid metal-organic frameworks: the impact of ether-functionalised linkers. Chem. - A Eur. J. 16 (2010), 14296–14306, 10.1002/chem.201002341.
Wang, Z., Tanabe, K.K., Cohen, S.M., Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification. Chem. - A Eur. J. 16 (2010), 212–217, 10.1002/chem.200902158.
Chaemchuen, S., Zhou, K., Kabir, N.A., Chen, Y., Ke, X., Van Tendeloo, G., Verpoort, F., Tuning metal sites of DABCO MOF for gas purification at ambient conditions. Microporous Mesoporous Mater. 201 (2015), 277–285, 10.1016/j.micromeso.2014.09.038.
Kim, H., Samsonenko, D.G., Das, S., Kim, G.-H., Lee, H.-S., Dybtsev, D.N., Berdonosova, E.A., Kim, K., Methane sorption and structural characterization of the sorption sites in Zn 2 (bdc) 2 (dabco) by single crystal X-ray crystallography. Chem. - An Asian J. 4 (2009), 886–891, 10.1002/asia.200900020.
Cadman, L.K., Bristow, J.K., Stubbs, N.E., Tiana, D., Mahon, M.F., Walsh, A., Burrows, A.D., Compositional control of pore geometry in multivariate metal–organic frameworks: an experimental and computational study. Dalt. Trans. 45 (2016), 4316–4326, 10.1039/C5DT04045K.
Uemura, K., Yamasaki, Y., Onishi, F., Kita, H., Ebihara, M., Two-step adsorption on jungle-gym-type porous coordination polymers: dependence on hydrogen-bonding capability of adsorbates, ligand-substituent effect, and temperature. Inorg. Chem. 49 (2010), 10133–10143, 10.1021/ic101517t.
Prasetya, N., Ladewig, B.P., New azo-DMOF-1 MOF as a photoresponsive low-energy CO 2 adsorbent and its exceptional CO 2/N 2 separation performance in mixed matrix membranes. ACS Appl. Mater. Interfaces 10 (2018), 34291–34301, 10.1021/acsami.8b12261.
Mcgrath, D.T., Downing, V.A., Katz, M.J., Investigating the Crystal Engineering of the Pillared Paddlewheel Metal-organic Framework Zn2(NH2BDC)2DABCO†. 2018, 10.1039/c8ce00848e.
Cmarik, G.E., Kim, M., Cohen, S.M., Walton, K.S., Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir 28 (2012), 15606–15613, 10.1021/la3035352.
Zhao, Y., Wu, H., Emge, T.J., Gong, Q., Nijem, N., Chabal, Y.J., Kong, L., Langreth, D.C., Liu, H., Zeng, H., Li, J., Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures. Chem. - A Eur. J. 17 (2011), 5101–5109, 10.1002/chem.201002818.
Biswas, S., Van Der Voort, P., A general strategy for the synthesis of functionalised UiO-66 frameworks: characterisation, stability and CO2 adsorption properties. Eur. J. Inorg. Chem., 2013, 2154–2160, 10.1002/ejic.201201228.
Liang, Z., Marshall, M., Chaffee, A.L., CO2 adsorption, selectivity and water tolerance of pillared-layer metal organic frameworks. Microporous Mesoporous Mater. 132 (2010), 305–310, 10.1016/j.micromeso.2009.11.026.
Mishra, P., Edubilli, S., Mandal, B., Gumma, S., Adsorption of CO2, CO, CH4 and N2 on DABCO based metal organic frameworks. Microporous Mesoporous Mater. 169 (2013), 75–80, 10.1016/j.micromeso.2012.10.025.
Lv, C., Li, W., Zhou, Y., Li, J., Lin, Z., A new porous ca(II)-organic framework with acylamide decorated pores for highly efficient CO2 capture. Inorg. Chem. Commun. 99 (2019), 40–43, 10.1016/j.inoche.2018.11.008.
Gao, C.-L., Nie, J.-Y., Preferential CO2 adsorption and theoretical simulation of a cu(II)-based metal-organic framework with open-metal sites and basic groups. Inorg. Chem. Commun. 102 (2019), 199–202, 10.1016/J.INOCHE.2019.02.029.
Sun, M.-Y., Chen, D.-M., A microporous metal-organic framework with unusual 2D → 3D polycatenation for selective sorption of CO2 over CH4 at room temperature. Inorg. Chem. Commun. 89 (2018), 18–21, 10.1016/J.INOCHE.2018.01.011.
Xiang, S., He, Y., Zhang, Z., Wu, H., Zhou, W., Krishna, R., Chen, B., Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun., 3, 2012, 954, 10.1038/ncomms1956.
Arab, P., Parrish, E., İslamoğlu, T., El-Kaderi, H.M., Synthesis and evaluation of porous azo-linked polymers for carbon dioxide capture and separation. J. Mater. Chem. A 3 (2015), 20586–20594, 10.1039/C5TA04308E.
Lee, S., Lee, J.H., Kim, J., User-friendly graphical user interface software for ideal adsorbed solution theory calculations. Korean J. Chem. Eng. 35 (2018), 214–221, 10.1007/s11814-017-0269-9.
Oschatz, M., Antonietti, M., A search for selectivity to enable CO2 capture with porous adsorbents. Energy Environ. Sci. 11 (2018), 57–70, 10.1039/C7EE02110K.
Li, J.-R., Yu, J., Lu, W., Sun, L.-B., Sculley, J., Balbuena, P.B., Zhou, H.-C., Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat. Commun., 4, 2013, 1538, 10.1038/ncomms2552.
Asgharnejad, L., Abbasi, A., Shakeri, A., Ni-based metal-organic framework/GO nanocomposites as selective adsorbent for CO2 over N2. Microporous Mesoporous Mater. 262 (2018), 227–234, 10.1016/J.MICROMESO.2017.11.038.
Wang, L., Zou, R., Guo, W., Gao, S., Meng, W., Yang, J., Chen, X., Zou, R., A new microporous metal-organic framework with a novel trinuclear nickel cluster for selective CO2 adsorption. Inorg. Chem. Commun. 104 (2019), 78–82, 10.1016/J.INOCHE.2019.03.029.
Patel, H.A., Hyun Je, S., Park, J., Chen, D.P., Jung, Y., Yavuz, C.T., Coskun, A., Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nat. Commun., 4, 2013, 1357, 10.1038/ncomms2359.
Lyndon, R., Konstas, K., Ladewig, B.P., Southon, P.D., Kepert, P.C.J., Hill, M.R., Dynamic photo-switching in metal-organic frameworks as a route to low-energy carbon dioxide capture and release. Angew. Chemie Int. Ed. 52 (2013), 3695–3698, 10.1002/anie.201206359.