Carbon capture; Gas separation membrane; Microporous material; Microporous polymer; MOF; POF; CO2 separation; Membrane fabrication; Membrane material; Metal organic framework; Microporous polymers; Physical and chemical properties; Chemistry (all); Environmental Chemistry; Chemical Engineering (all); Industrial and Manufacturing Engineering; General Chemical Engineering; General Chemistry
Abstract :
[en] Membrane technology has gained great attention as one of the promising strategies for carbon capture and separation. Intended for such application, membrane fabrication from various materials has been attempted. While gas separation membranes based on dense polymeric materials have been long developed, there is a growing interest to use porous materials as the membrane material. This review then focuses on emerging organic-containing microporous materials to be used for the fabrication of membranes that are designed for CO2 separation. Criteria for selecting the materials are first discussed, including physical and chemical properties, and parameters in membrane fabrication. Membranes based on these materials, such as metal-organic frameworks, porous organic frameworks, and microporous polymers, are then reviewed. Finally, special attention is given to recent advances, challenges, and perspectives in the development of such membranes for carbon capture and separation.
Disciplines :
Chemical engineering
Author, co-author :
Prasetya, Nicholaus ; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom
Himma, Nurul F.; Department of Chemical Engineering, Universitas Brawijaya, Malang, Indonesia
Sutrisna, Putu Doddy; Department of Chemical Engineering, Universitas Surabaya, Surabaya, Indonesia
Wenten, I.G.; Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, Indonesia ; Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, Indonesia
LADEWIG, Bradley Paul ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom ; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
External co-authors :
yes
Language :
English
Title :
A review on emerging organic-containing microporous material membranes for carbon capture and separation
N. P acknowledges the PhD scholarship from the Department of Chemical Engineering, Imperial College London. I G. W acknowledges the funding from Ministry of Research, Technology and Higher Education of the Republic of Indonesia under World Class University Programme managed by Institute of Technology Bandung. P. D. S acknowledges the financial support from Ministry of Research, Technology and Higher Education of the Republic of Indonesia under National Competitive Fundamental Research Grant 2019 with contract number 004/SP2H/LT/MULTI/L7/2019. Data Repository, The data presented is Figs. 6 and 10 (Robeson plots) are also available in tabular form, along with high-resolution versions of the Figures, from the following open repository: https://doi.org/10.5281/zenodo.3362810N. P acknowledges the PhD scholarship from the Department of Chemical Engineering, Imperial College London. I G. W acknowledges the funding from Ministry of Research, Technology and Higher Education of the Republic of Indonesia under World Class University Programme managed by Institute of Technology Bandung. P. D. S acknowledges the financial support from Ministry of Research, Technology and Higher Education of the Republic of Indonesia under National Competitive Fundamental Research Grant 2019 with contract number 004/SP2H/LT/MULTI/L7/2019. Data Repository The data presented is Figs. 6 and 10 (Robeson plots) are also available in tabular form, along with high-resolution versions of the Figures, from the following open repository: https://doi.org/10.5281/zenodo.3362810 Appendix A
Hägg, M.-B., et al. Pilot demonstration-reporting on CO2 capture from a cement plant using hollow fiber process. Energy Procedia 114 (2017), 6150–6165.
Leung, D.Y., Caramanna, G., Maroto-Valer, M.M., An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39 (2014), 426–443.
Scholes, C.A., Cost Competitive Membrane Processes for Carbon Capture, in Membrane Engineering for the Treatment of. Gases, 2017, 216–241.
Merkel, T.C., et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 359:1–2 (2010), 126–139.
Figueroa, J.D., et al. Advances in CO2 capture technology—the US Department of Energy's Carbon Sequestration Program. Int. J. Greenhouse Gas Control 2:1 (2008), 9–20.
Galizia, M., et al. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules 50:20 (2017), 7809–7843.
Zou, X., Zhu, G., Microporous Organic Materials for Membrane-Based Gas Separation. Adv. Mater., 30(3), 2018, 1700750.
Caro, J., Are MOF membranes better in gas separation than those made of zeolites?. Curr. Opin. Chem. Eng. 1:1 (2011), 77–83.
Dong, G., Lee, Y.M., Thermally Rearranged Polymers: The Ultimate Solution for Membrane Gas Separation, in Membrane Engineering for the Treatment of. Gases, 2017, 50–93.
Ahmed, D.S., et al. Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review. J. Polym. Res., 25(3), 2018, 75.
Oschatz, M., Antonietti, M., A search for selectivity to enable CO 2 capture with porous adsorbents. Energy Environ. Sci. 11:1 (2018), 57–70.
Cao, S., et al. Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem. Eng. J., 2018.
Lin, X., Champness, N.R., Schröder, M., Hydrogen Methane and Carbon Dioxide Adsorption in Metal-Organic Framework Materials, in Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis, M. Schröder, Editor. 2010, Springer Berlin Heidelberg, Berlin Heidelberg, 35–76.
Chaoui, N., et al. Trends and challenges for microporous polymers. Chem. Soc. Rev., 2017.
Dawson, R., Cooper, A.I., Adams, D.J., Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. Polym. Int. 62:3 (2013), 345–352.
Bae, Y.S., Snurr, R.Q., Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. 50:49 (2011), 11586–11596.
Yu, G., et al. Engineering microporous organic framework membranes for CO 2 separations. Mol. Syst. Des. Eng., 2017.
Olajire, A.A., Recent advances in the synthesis of covalent organic frameworks for CO2 capture. J. CO2 Util. 17 (2017), 137–161.
Yuan, Y., et al. Porous aromatic frameworks with anion-templated pore apertures serving as polymeric sieves. Nat. Commun., 5, 2014, 4260.
Trickett, C.A., et al. The chemistry of metal–organic frameworks for CO 2 capture, regeneration and conversion. Nat. Rev. Mater., 2(8), 2017, 17045.
Wang, W., Zhou, M., Yuan, D., Carbon dioxide capture in amorphous porous organic polymers. J. Mater. Chem. A 5:4 (2017), 1334–1347.
Flaig, R.W., et al. The Chemistry of CO2 Capture in an Amine-Functionalized Metal-Organic Framework under Dry and Humid Conditions. J. Am. Chem. Soc. 139:35 (2017), 12125–12128.
Gao, X., et al. Highly selective and permeable porous organic framework membrane for CO2 capture. Adv. Mater. 26:22 (2014), 3644–3648.
Shan, M., et al. Azine-Linked Covalent Organic Framework (COF)-Based Mixed-Matrix Membranes for CO2/CH4 Separation. Chemistry-A European Journal 22:41 (2016), 14467–14470.
Yu, G., et al. Mixed matrix membranes derived from nanoscale porous organic frameworks for permeable and selective CO2 separation. J. Membr. Sci., 591, 2019, 117343.
Dawson, R., et al. Microporous organic polymers for carbon dioxide capture. Energy Environ. Sci. 4:10 (2011), 4239–4245.
Patel, H.A., et al. Unprecedented high-temperature CO 2 selectivity in N 2-phobic nanoporous covalent organic polymers. Nat. Commun., 4, 2013, 1357.
Prasetya, N., Ladewig, B.P., An Insight on the Effect of Azobenzene Functionalities Studied in UiO-66 Framework for Low Energy CO2 capture and CO2/N2 Membrane Separation. J. Mater. Chem. A, 2019.
Rabbani, M.G., El-Kaderi, H.M., Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage. Chem. Mater. 23:7 (2011), 1650–1653.
Huang, K., Liu, F., Dai, S., Solvothermal synthesis of hierarchically nanoporous organic polymers with tunable nitrogen functionality for highly selective capture of CO 2. J. Mater. Chem. A 4:34 (2016), 13063–13070.
Du, N., et al. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 10:5 (2011), 372–375.
Banerjee, R., et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131:11 (2009), 3875–3877.
Xiang, Z., et al. Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. J. Am. Chem. Soc. 137:41 (2015), 13301–13307.
Peng, Y., et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346:6215 (2014), 1356–1359.
Yazaydın, A.O.z.r, et al. Screening of metal− organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131:51 (2009), 18198–18199.
Robeson, L.M., The upper bound revisited. J. Membr. Sci. 320:1–2 (2008), 390–400.
Park, H.B., et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 356(6343), 2017, eaab0530.
Budd, P., Sorribas, S., Tamaddondar, M., Highly Permeable Polymers for the Treatment of Gases (PIMs). Membrane Engineering for the Treatment of Gases, 2017, 117–148.
Bernardo, P., Drioli, E., Golemme, G., Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48:10 (2009), 4638–4663.
Zou, X., Zhu, G., Microporous Organic Materials for Membrane-Based Gas Separation. Adv. Mater., 2017.
Liu, J., et al. High-Performance Polymers for Membrane CO2/N2 Separation. Chemistry-A European Journal 22:45 (2016), 15980–15990.
Li, W., et al. Metal− organic framework composite membranes: Synthesis and separation applications. Chem. Eng. Sci. 135 (2015), 232–257.
Bohrman, J.A., Carreon, M.A., Synthesis and CO 2/CH 4 separation performance of Bio-MOF-1 membranes. Chem. Commun. 48:42 (2012), 5130–5132.
Lu, H., et al. A novel 3D covalent organic framework membrane grown on a porous α-Al 2 O 3 substrate under solvothermal conditions. Chem. Commun. 51:85 (2015), 15562–15565.
Abedini, R., Omidkhah, M., Dorosti, F., Highly permeable poly (4-methyl-1-pentyne)/NH 2-MIL 53 (Al) mixed matrix membrane for CO 2/CH 4 separation. RSC Adv. 4:69 (2014), 36522–36537.
Shahid, S., Nijmeijer, K., High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous Fe (BTC). J. Membr. Sci. 459 (2014), 33–44.
Rodenas, T., et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14:1 (2015), 48–55.
Zhu, H., et al. Improved interfacial affinity and CO2 separation performance of asymmetric mixed matrix membranes by incorporating postmodified MIL-53 (Al). ACS Appl. Mater. Interfaces 8:34 (2016), 22696–22704.
Shahid, S., et al. MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties. J. Membr. Sci. 492 (2015), 21–31.
Yong, W.F., et al. Suppression of aging and plasticization in highly permeable polymers. Polymer 77 (2015), 377–386.
Jusoh, N., et al. Current development and challenges of mixed matrix membranes for CO2/CH4 separation. Sep. Purif. Rev. 45:4 (2016), 321–344.
Lasseuguette, E., et al. Effect of humidity and flue gas impurities on CO2 permeation of a polymer of intrinsic microporosity for post-combustion capture. Int. J. Greenhouse Gas Control 50 (2016), 93–99.
Lin, H., Yavari, M., Upper bound of polymeric membranes for mixed-gas CO2/CH4 separations. J. Membr. Sci. 475 (2015), 101–109.
Xian, S., et al. Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures. Chem. Eng. J. 270 (2015), 385–392.
Lau, C.H., et al. Hypercrosslinked Additives for Ageless Gas-Separation Membranes. Angew. Chem. Int. Ed. 55:6 (2016), 1998–2001.
Lau, C.H., et al. Ending aging in super glassy polymer membranes. Angew. Chem. Int. Ed. 53:21 (2014), 5322–5326.
Bae, T.-H., Long, J.R., CO 2/N 2 separations with mixed-matrix membranes containing Mg 2 (dobdc) nanocrystals. Energy Environ. Sci. 6:12 (2013), 3565–3569.
Rodenas, T., et al. Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure-Performance Relationships in CO2/CH4 Separation Over NH2-MIL-53 (Al)@ PI. Adv. Funct. Mater. 24:2 (2014), 249–256.
Cao, L., et al. A highly permeable mixed matrix membrane containing CAU-1-NH 2 for H 2 and CO 2 separation. Chem. Commun. 49:76 (2013), 8513–8515.
Rodrigues, M.A., et al. Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Sep. Purif. Technol. 192 (2018), 491–500.
Tien-Binh, N., et al. Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO 2/CH 4 gas separation. J. Mater. Chem. A 3:29 (2015), 15202–15213.
Anjum, M.W., et al. MIL-125 (Ti) based mixed matrix membranes for CO 2 separation from CH 4 and N 2. J. Membr. Sci. 502 (2016), 21–28.
Li, H., et al. Simultaneous enhancement of mechanical properties and CO 2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid. J. Membr. Sci. 511 (2016), 130–142.
Al-Maythalony, B.A., et al. Tuning the interplay between selectivity and permeability of ZIF-7 mixed matrix membranes. ACS Appl. Mater. Interfaces 9:39 (2017), 33401–33407.
Smith, S.J., et al. Post-Synthetic Annealing: Linker Self-Exchange in UiO-66 and Its Effect on Polymer-Metal Organic Framework Interaction. Cryst. Growth Des. 17:8 (2017), 4384–4392.
Lai, W.-H., et al. Creation of tiny defects in ZIF-8 by thermal annealing to improve the CO2/N2 separation of mixed matrix membranes. J. Membr. Sci. 572 (2019), 410–418.
Prasetya, N., Ladewig, B.P., New Azo-DMOF-1 MOF as a Photoresponsive Low-Energy CO2 Adsorbent and Its Exceptional CO2/N2 Separation Performance in Mixed Matrix Membranes. ACS Appl. Mater. Interfaces 10:40 (2018), 34291–34301.
Prasetya, N., Donose, B.C., Ladewig, B.P., A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO 2 capture and its application in a mixed matrix membrane for CO 2/N 2 separation. J. Mater. Chem. A 6:34 (2018), 16390–16402.
Xin, Q., et al. Enhanced Interfacial Interaction and CO2 Separation Performance of Mixed Matrix Membrane by Incorporating Polyethylenimine-Decorated Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 7:2 (2015), 1065–1077.
Kang, Z., et al. Mixed matrix membranes composed of two-dimensional metal–organic framework nanosheets for pre-combustion CO 2 capture: a relationship study of filler morphology versus membrane performance. J. Mater. Chem. A 3:41 (2015), 20801–20810.
Sabetghadam, A., et al. Thin mixed matrix and dual layer membranes containing metal-organic framework nanosheets and PolyactiveTM for CO2 capture. J. Membr. Sci., 2018.
Kertik, A., et al. Highly selective gas separation membrane using in situ amorphised metal–organic frameworks. Energy Environ. Sci. 10:11 (2017), 2342–2351.
Tanh Jeazet, H.B., et al. Increased Selectivity in CO2/CH4 Separation with Mixed-Matrix Membranes of Polysulfone and Mixed-MOFs MIL-101 (Cr) and ZIF-8. Eur. J. Inorg. Chem. 2016:27 (2016), 4363–4367.
Li, W., Samarasinghe, S., Bae, T.-H., Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8. J. Ind. Eng. Chem. 67 (2018), 156–163.
Zornoza, B., et al. Combination of MOFs and Zeolites for Mixed-Matrix Membranes. ChemPhysChem 12:15 (2011), 2781–2785.
Dong, L., et al. Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes. J. Membr. Sci. 520 (2016), 801–811.
Anastasiou, S., et al. Metal-organic framework/graphene oxide composite fillers in mixed-matrix membranes for CO2 separation. Mater. Chem. Phys. 212 (2018), 513–522.
Castarlenas, S., Téllez, C., Coronas, J., Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. J. Membr. Sci. 526 (2017), 205–211.
Sabetghadam, A., et al. Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance. Adv. Funct. Mater. 26:18 (2016), 3154–3163.
Shahid, S., Nijmeijer, K., Performance and plasticization behavior of polymer–MOF membranes for gas separation at elevated pressures. J. Membr. Sci. 470 (2014), 166–177.
Ahmadi Feijani, E., Tavasoli, A., Mahdavi, H., Improving Gas Separation Performance of Poly (vinylidene fluoride) Based Mixed Matrix Membranes Containing Metal-Organic Frameworks by Chemical Modification. Ind. Eng. Chem. Res. 54:48 (2015), 12124–12134.
Dorosti, F., Omidkhah, M., Abedini, R., Enhanced CO2/CH4 separation properties of asymmetric mixed matrix membrane by incorporating nano-porous ZSM-5 and MIL-53 particles into Matrimid® 5218. J. Nat. Gas Sci. Eng. 25 (2015), 88–102.
Kanehashi, S., et al. The impact of water vapor on CO 2 separation performance of mixed matrix membranes. J. Membr. Sci. 492 (2015), 471–477.
Hu, Y., et al. Metal–organic framework membranes fabricated via reactive seeding. Chem. Commun. 47:2 (2011), 737–739.
Li, Y.S., et al. Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity. Angew. Chem. 122:3 (2010), 558–561.
Venna, S.R., et al. Knudsen diffusion through ZIF-8 membranes synthesized by secondary seeded growth. J. Porous Mater. 21:2 (2014), 235–240.
Wang, N., et al. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H 2/CO 2 separation. Chem. Eng. Sci. 124 (2015), 27–36.
Liu, J., Canfield, N., Liu, W., Preparation and Characterization of a Hydrophobic Metal-Organic Framework Membrane Supported on a Thin Porous Metal Sheet. Ind. Eng. Chem. Res. 55:13 (2016), 3823–3832.
Venna, S.R., Carreon, M.A., Metal organic framework membranes for carbon dioxide separation. Chem. Eng. Sci. 124 (2015), 3–19.
Liu, X., et al. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137:22 (2015), 6999–7002.
Xu, G., et al. Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. J. Membr. Sci. 385 (2011), 187–193.
McCarthy, M.C., et al. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir 26:18 (2010), 14636–14641.
Li, W., et al. Ultrathin metal–organic framework membrane production by gel–vapour deposition. Nat. Commun., 8(1), 2017, 406.
Guo, H., et al. “Twin Copper Source” Growth of Metal− Organic Framework Membrane: Cu3 (BTC) 2 with High Permeability and Selectivity for Recycling H2. J. Am. Chem. Soc. 131:5 (2009), 1646–1647.
Al-Maythalony, B.A., et al. Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. J. Am. Chem. Soc. 137:5 (2015), 1754–1757.
Lai, L.S., et al. Synthesis of zeolitic imidazolate frameworks (ZIF)-8 membrane and its process optimization study in separation of CO2 from natural gas. J. Chem. Technol. Biotechnol. 92:2 (2017), 420–431.
Li, Y., et al. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Membr. Sci. 354:1–2 (2010), 48–54.
Zhao, Z., et al. Gas separation properties of metal organic framework (MOF-5) membranes. Ind. Eng. Chem. Res. 52:3 (2012), 1102–1108.
Ranjan, R., Tsapatsis, M., Microporous metal organic framework membrane on porous support using the seeded growth method. Chem. Mater. 21:20 (2009), 4920–4924.
Huang, A., et al. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H 2/CO 2 separation. Chem. Commun. 48:89 (2012), 10981–10983.
Lai, L.S., et al. CO2 and CH4 gas permeation study via zeolitic imidazolate framework (ZIF)-8 membrane. J. Nat. Gas Sci. Eng. 34 (2016), 509–519.
Rui, Z., et al. Metal-organic framework membrane process for high purity CO2 production. AIChE J. 62:11 (2016), 3836–3841.
Kumar, R., et al. Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO 2 uptake and other novel properties. Chem. Commun. 49:43 (2013), 4947–4949.
Tzialla, O., et al., Zeolite imidazolate framework–ionic liquid hybrid membranes for highly selective CO2 separation. 2013.
Huang, A., et al. Bicontinuous zeolitic imidazolate framework ZIF-8@ GO membrane with enhanced hydrogen selectivity. J. Am. Chem. Soc. 136:42 (2014), 14686–14689.
Xie, K., et al. Continuous assembly of a polymer on a metal–organic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy Environ. Sci. 11:3 (2018), 544–550.
Liu, M., et al. Ultrathin Metal-Organic Framework Nanosheets as A Gutter Layer for Flexible Composite Gas Separation Membranes. ACS Nano, 2018.
Hou, J., et al. Formation of ultrathin, continuous metal–organic framework membranes on flexible polymer substrates. Angew. Chem. Int. Ed. 55:12 (2016), 3947–3951.
Xin, Q., et al. Mixed matrix membranes composed of sulfonated poly (ether ether ketone) and a sulfonated metal–organic framework for gas separation. J. Membr. Sci. 488 (2015), 67–78.
Biswal, B.P., et al. Chemically Stable Covalent Organic Framework (COF)-Polybenzimidazole Hybrid Membranes: Enhanced Gas Separation through Pore Modulation. Chemistry-A European Journal 22:14 (2016), 4695–4699.
Duan, K., et al. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. J. Membr. Sci. 572 (2019), 588–595.
Kang, Z., et al. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater 28:5 (2016), 1277–1285.
Lau, C.H., et al. Tailoring physical aging in super glassy polymers with functionalized porous aromatic frameworks for CO2 capture. Chem. Mater. 27:13 (2015), 4756–4762.
Wang, C., et al. Porous organic polymer as fillers for fabrication of defect-free PIM-1 based mixed matrix membranes with facilitating CO2-transfer chain. J. Membr. Sci. 564 (2018), 115–122.
Li, G., Zhang, K., Tsuru, T., Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets. ACS Appl. Mater. Interfaces 9:10 (2017), 8433–8436.
Shan, M., et al. Azine-Linked Covalent Organic Framework (COF)-Based Mixed-Matrix Membranes for CO2/CH4 Separation. Chemistry–A. European Journal 22:41 (2016), 14467–14470.
Li, S., Prasetya, N., Ladewig, B.P., Investigation of Azo-COP-2 as a Photoresponsive Low-Energy CO2 Adsorbent and Porous Filler in Mixed Matrix Membranes for CO2/N2 Separation. Ind. Eng. Chem. Res. 58:23 (2019), 9959–9969.
Cao, X., et al. Penetrated COF channels: amino environment and suitable size for CO2 preferential adsorption and transport in mixed matrix membranes. ACS Appl. Mater. Interfaces 11:5 (2019), 5306–5315.
Cheng, Y., et al. Mixed matrix membranes containing MOF@ COF hybrid fillers for efficient CO2/CH4 separation. J. Membr. Sci. 573 (2019), 97–106.
Cheng, Y., et al. Enhanced Polymer Crystallinity in Mixed Matrix Membranes Induced by Metal-Organic Framework Nanosheets for Efficient CO2 Capture. ACS Appl. Mater. Interfaces, 2018.
Zou, C., et al. Mechanical Synthesis of COF Nanosheet Cluster and Its Mixed Matrix Membrane for Efficient CO2 Removal. ACS Appl. Mater. Interfaces 9:34 (2017), 29093–29100.
Shan, M., et al. Mixed-matrix membranes containing an azine-linked covalent organic framework: Influence of the polymeric matrix on post-combustion CO 2-capture. J. Membr. Sci. 549 (2018), 377–384.
Tong, M., et al. Few-layered ultrathin covalent organic framework membranes for gas separation: a computational study. J. Mater. Chem. A 4:1 (2016), 124–131.
Yan, T., et al. Screening and Design of Covalent Organic Framework Membranes for CO2/CH4 Separation. ACS Sustainable Chem. Eng. 7:1 (2018), 1220–1227.
Song, Q., et al. Porous Organic Cage Thin Films and Molecular-Sieving Membranes. Adv. Mater. 28:13 (2016), 2629–2637.
Fan, H., et al. Covalent Organic Framework-Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation. J. Am. Chem. Soc. 140:32 (2018), 10094–10098.
Ying, Y., et al. A GO-assisted method for the preparation of ultrathin covalent organic framework membranes for gas separation. J. Mater. Chem. A 4:35 (2016), 13444–13449.
Shan, M., et al. Facile manufacture of porous organic framework membranes for precombustion CO2 capture. Sci. Adv., 4(9), 2018, eaau1698.
Fan, H., et al. An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO 2/CH 4 separation. J. Mater. Chem. A 6:35 (2018), 16849–16853.
Park, H.B., et al. Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions. Science, 318(5848), 2007, 254.
Do, Y.S., et al. Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes. Chem. Commun. 52:93 (2016), 13556–13559.
Dong, G. and Y.M. Lee, 1.8 Thermally Rearranged Polymeric Membranes: Materials and Applications, in Comprehensive Membrane Science and Engineering (Second Edition). 2017, Elsevier: Oxford. p. 190-215.
Park, H.B., et al. Thermally rearranged (TR) polymer membranes for CO2 separation. J. Membr. Sci. 359:1 (2010), 11–24.
Han, S.H., et al. Thermally Rearranged (TR) Polybenzoxazole: Effects of Diverse Imidization Routes on Physical Properties and Gas Transport Behaviors. Macromolecules 43:18 (2010), 7657–7667.
Kim, S., Jo, H.J., Lee, Y.M., Sorption and transport of small gas molecules in thermally rearranged (TR) polybenzoxazole membranes based on 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane (bisAPAF) and 4,4′-hexafluoroisopropylidene diphthalic anhydride (6FDA). J. Membr. Sci. 441:Supplement C (2013), 1–8.
Alghunaimi, F., et al. Synthesis and gas permeation properties of a novel thermally-rearranged polybenzoxazole made from an intrinsically microporous hydroxyl-functionalized triptycene-based polyimide precursor. Polymer 121 (2017), 9–16.
Shamsipur, H., et al. Thermally Rearrangeable PIM-Polyimides for Gas Separation Membranes. Macromolecules 47:16 (2014), 5595–5606.
Li, S., et al. Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation. J. Membr. Sci. 434:Supplement C (2013), 137–147.
Liu, Q., et al. Gas permeation properties of thermally rearranged (TR) isomers and their aromatic polyimide precursors. J. Membr. Sci. 518 (2016), 88–99.
Kim, S., Han, S.H., Lee, Y.M., Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. J. Membr. Sci. 403–404(Supplement (2012), 169–178.
Han, S.H., et al. Tuning microcavities in thermally rearranged polymer membranes for CO 2 capture. PCCP 14:13 (2012), 4365–4373.
Han, S.H., et al. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. J. Membr. Sci. 357:1 (2010), 143–151.
Freeman, B.D. and A.J. Hill, Free Volume and Transport Properties of Barrier and Membrane Polymers, in Structure and Properties of Glassy Polymers. 1999, American Chemical Society. p. 306-325.
Tiwari, R.R., et al. Gas permeation in thin films of “high free-volume” glassy perfluoropolymers: Part I. Physical aging. Polymer 55:22 (2014), 5788–5800.
Comesaña-Gándara, B., et al. Thermally rearranged polybenzoxazoles membranes with biphenyl moieties: Monomer isomeric effect. J. Membr. Sci. 450:Supplement C (2014), 369–379.
Guo, R., et al. Synthesis and characterization of thermally rearranged (TR) polymers: effect of glass transition temperature of aromatic poly(hydroxyimide) precursors on TR process and gas permeation properties. J. Mater. Chem. A 1:19 (2013), 6063–6072.
Liu, Q., Paul, D.R., Freeman, B.D., Gas permeation and mechanical properties of thermally rearranged (TR) copolyimides. Polymer 82 (2016), 378–391.
Chua, M.L., Xiao, Y.C., Chung, T.-S., Modifying the molecular structure and gas separation performance of thermally labile polyimide-based membranes for enhanced natural gas purification. Chem. Eng. Sci. 104 (2013), 1056–1064.
Bryjak, M., et al. Stimuli responsive membranes in separation processes-short review. Copernican Letters 6 (2015), 4–10.
Ye, L., et al. The evolution of free volume and gas transport properties for the thermal rearrangement of poly(hydroxyamide-co-amide)s membranes. J. Membr. Sci., 2018.
Kim, S., et al. Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation. J. Mater. Chem. A 6:17 (2018), 7668–7674.
Brunetti, A., et al. In situ restoring of aged thermally rearranged gas separation membranes. J. Membr. Sci. 520 (2016), 671–678.
Brunetti, A., et al. Thermally rearranged mixed matrix membranes for CO2 separation: An aging study. Int. J. Greenhouse Gas Control 61 (2017), 16–26.
Smith, Z.P., et al. Effect of polymer structure on gas transport properties of selected aromatic polyimides, polyamides and TR polymers. J. Membr. Sci. 493 (2015), 766–781.
Swaidan, R., et al. High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity. J. Membr. Sci. 447 (2013), 387–394.
AlQahtani, M.S., Mezghani, K., Thermally rearranged polypyrrolone membranes for high-pressure natural gas separation applications. J. Nat. Gas Sci. Eng. 51 (2018), 262–270.
Scholes, C.A., et al. Permeation and separation of SO2, H2S and CO2 through thermally rearranged (TR) polymeric membranes. Sep. Purif. Technol. 179 (2017), 449–454.
Cersosimo, M., et al. Separation of CO2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes. J. Membr. Sci. 492 (2015), 257–262.
Lee, J.H., et al. Wet CO2/N2 permeation through a crosslinked thermally rearranged poly(benzoxazole-co-imide) (XTR-PBOI) hollow fiber membrane module for CO2 capture. J. Membr. Sci. 539 (2017), 412–420.
Kim, S., et al. Gas sorption and transport in thermally rearranged polybenzoxazole membranes derived from polyhydroxylamides. J. Membr. Sci. 474:Supplement C (2015), 122–131.
Budd, P.M., et al. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 2 (2004), 230–231.
Swaidan, R., Ghanem, B., Pinnau, I., Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett. 4:9 (2015), 947–951.
Liang, C.Z., et al. High-performance multiple-layer PIM composite hollow fiber membranes for gas separation. J. Membr. Sci. 563 (2018), 93–106.
Bhavsar, R.S., et al. Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. J. Membr. Sci. 564 (2018), 878–886.
Budd, P.M., et al. Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1. J. Membr. Sci. 325:2 (2008), 851–860.
Jue, M.L., et al. Effect of Nonsolvent Treatments on the Microstructure of PIM-1. Macromolecules 48:16 (2015), 5780–5790.
Mason, C.R., et al. Polymer of intrinsic microporosity incorporating thioamide functionality: preparation and gas transport properties. Macromolecules 44:16 (2011), 6471–6479.
Satilmis, B., et al. Temperature and pressure dependence of gas permeation in amine-modified PIM-1. J. Membr. Sci. 555 (2018), 483–496.
Liu, J., et al. Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin. J. Membr. Sci. 523 (2017), 92–102.
Du, N., et al. Polymer nanosieve membranes for CO 2-capture applications. Nat. Mater., 10(5), 2011, 372.
Li, F.Y., et al. UV-Rearranged PIM-1 Polymeric Membranes for Advanced Hydrogen Purification and Production. Adv. Energy Mater. 2:12 (2012), 1456–1466.
Li, F.Y., et al. High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules 45:3 (2012), 1427–1437.
McDonald, T.O., et al. Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties. J. Mater. Chem. A 3:9 (2015), 4855–4864.
Hao, L., Zuo, J., Chung, T.S., Formation of defect-free polyetherimide/PIM-1 hollow fiber membranes for gas separation. AIChE J. 60:11 (2014), 3848–3858.
Yong, W.F., et al. Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes. J. Membr. Sci. 462 (2014), 119–130.
Yong, W.F., et al. High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation. J. Membr. Sci. 443 (2013), 156–169.
Zhao, S., et al. Blending of compatible polymer of intrinsic microporosity (PIM-1) with Tröger's Base polymer for gas separation membranes. J. Membr. Sci. 566 (2018), 77–86.
Wu, X.M., et al. Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol. J. Membr. Sci. 493 (2015), 147–155.
Tien-Binh, N., Rodrigue, D., Kaliaguine, S., In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control. J. Membr. Sci. 548 (2018), 429–438.
Yu, G., et al. Constructing Connected Paths between UiO-66 and PIM-1 to Improve Membrane CO2 Separation with Crystal-Like Gas Selectivity. Adv. Mater., 31(15), 2019, 1806853.
Wu, X., et al. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. J. Membr. Sci. 528 (2017), 273–283.
Elliot, A., Separation of carbon dioxide from flue gas by mixed matrix membranes using dual phase microporous polymeric constituents. Chem. Commun. 52:79 (2016), 11768–11771.
Kinoshita, Y., et al. Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers. J. Membr. Sci. 539 (2017), 178–186.
Golzar, K., Modarress, H., Amjad-Iranagh, S., Effect of pristine and functionalized single-and multi-walled carbon nanotubes on CO2 separation of mixed matrix membranes based on polymers of intrinsic microporosity (PIM-1): a molecular dynamics simulation study. J. Mol. Model., 23(9), 2017, 266.
Prasetya, N., Ladewig, B.P., An Insight on the Effect of Azobenzene Functionalities Studied in UiO-66 Framework for Low Energy CO2 capture and CO2/N2 Membrane Separation. J. Mater. Chem. A 7 (2019), 15164–15172.
Song, Q., et al. Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes. J. Mater. Chem. A 4:1 (2016), 270–279.
Cheng, Y., et al. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J. Membr. Sci. 539 (2017), 213–223.
Tiwari, R.R., et al. Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1). J. Membr. Sci. 537 (2017), 362–371.
Genduso, G., et al. Permeation, sorption, and diffusion of CO2-CH4 mixtures in polymers of intrinsic microporosity: The effect of intrachain rigidity on plasticization resistance. J. Membr. Sci. 584 (2019), 100–109.
Swaidan, R., et al. Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity. Macromolecules 48:18 (2015), 6553–6561.
Choi, J.I., et al. Thermally rearranged (TR) poly (benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity. J. Membr. Sci. 349:1–2 (2010), 358–368.
Yong, W., et al. Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. J. Membr. Sci. 407 (2012), 47–57.
Hu, J., et al. Mixed-matrix membrane hollow fibers of Cu3 (BTC) 2 MOF and polyimide for gas separation and adsorption. Ind. Eng. Chem. Res. 49:24 (2010), 12605–12612.
Mubashir, M., et al. Optimization of spinning parameters on the fabrication of NH2-MIL-53 (Al)/cellulose acetate (CA) hollow fiber mixed matrix membrane for CO2 separation. Sep. Purif. Technol. 215 (2019), 32–43.
Woo, K.T., et al. Thermally rearranged poly(benzoxazole-co-imide) hollow fiber membranes for CO2 capture. J. Membr. Sci. 498 (2016), 125–134.
Chen, C., et al. Gas permeation through single-crystal ZIF-8 membranes. J. Membr. Sci. 575 (2019), 209–216.
Selyanchyn, R., Fujikawa, S., Membrane thinning for efficient CO2 capture. Sci. Technol. Adv. Mater. 18:1 (2017), 816–827.
Nordin, N.A.H.M., et al. Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO 2/CH 4 separation. RSC Adv. 5:38 (2015), 30206–30215.
Cheng, Y., et al. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO 2/CH 4 separation. J. Membr. Sci., 2017.
Sutrisna, P.D., et al. Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes. J. Mater. Chem. A, 2018.
Adatoz, E., Avci, A.K., Keskin, S., Opportunities and challenges of MOF-based membranes in gas separations. Sep. Purif. Technol. 152 (2015), 207–237.
Prasetya, N., Teck, A.A., Ladewig, B.P., Matrimid-JUC-62 and Matrimid-PCN-250 mixed matrix membranes displaying light-responsive gas separation and beneficial ageing characteristics for CO 2/N 2 separation. Sci. Rep., 8(1), 2018, 2944.