Polymer-assisted modification of metal-organic framework MIL-96 (Al): influence of HPAM concentration on particle size, crystal morphology and removal of harmful environmental pollutant PFOA.
Mohd Azmi, Luqman Hakim; Williams, Daryl R; LADEWIG, Bradley Paul
Adsorption; Crystal morphology; HPAM; Metal-organic frameworks; Particle size; Perfluorooctanoic acid; Acrylic Resins; Aluminum; Caprylates; Charcoal; Fluorocarbons; Metal-Organic Frameworks; perfluorooctanoic acid; polyacrylamide; Water Pollutants, Chemical; Acrylic Resins/chemistry; Charcoal/chemistry; Particle Size; Solubility; Surface Properties; Aluminum/chemistry; Caprylates/analysis; Fluorocarbons/analysis; Metal-Organic Frameworks/chemistry; Water Pollutants, Chemical/analysis; Water Purification/methods; Adsorption capacities; Crystal morphologies; Environmental pollutants; High ionic strength; Hydrolyzed polyacrylamides; Larger particle sizes; Watersoluble polymers; Lysergic Acid Diethylamide; Water Purification; Environmental Engineering; Environmental Chemistry; Chemistry (all); Pollution; Health, Toxicology and Mutagenesis; General Medicine; General Chemistry; Public Health, Environmental and Occupational Health
Abstract :
[en] A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.
Disciplines :
Chemical engineering
Author, co-author :
Mohd Azmi, Luqman Hakim ; Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom, Grantham Institute - Climate Change and the Environment, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom, Surfaces and Particle Engineering Laboratory (SPEL), Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom
Williams, Daryl R; Surfaces and Particle Engineering Laboratory (SPEL), Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom
LADEWIG, Bradley Paul ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom, Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. Electronic address: bradley.ladewig@kit.edu
External co-authors :
yes
Language :
English
Title :
Polymer-assisted modification of metal-organic framework MIL-96 (Al): influence of HPAM concentration on particle size, crystal morphology and removal of harmful environmental pollutant PFOA.
Luqman Hakim Mohd Azmi gratefully acknowledges the financial support provided by the sovereign wealth fund of Malaysian Government, Yayasan Khazanah for his PhD studies. The authors also thank Prof. Paul D. Lickiss, Dr. Pavani Cherukupally, Elwin Hunter-Sellars, Dr. Shanxue Jiang and Tingwu Liu for useful discussion on material design and characterization.
Abid, H.R., Rada, Z.H., Shang, J., Wang, S., Synthesis, characterization, and CO2 adsorption of three metal-organic frameworks (MOFs): MIL-53, MIL-96, and amino-MIL-53. Polyhedron 120 (2016), 103–111.
Al-Hamairi, A., AlAmeri, W., Development of a novel model to predict HPAM viscosity with the effects of concentration, salinity and divalent content. J. Pet. Explor. Prod. Technol., 2020, 1–15.
Ali, M., Meaney, S.P., Giles, L.W., Holt, P., Majumder, M., Tabor, R.F., Capture of perfluorooctanoic acid using oil-filled graphene oxide–silica hybrid capsules. Environ. Sci. Technol. 54 (2020), 3549–3558.
Andersson, E.M., Scott, K., Xu, Y., Li, Y., Olsson, D.S., Fletcher, T., Jakobsson, K., High exposure to perfluorinated compounds in drinking water and thyroid disease. A cohort study from Ronneby, Sweden. Environ. Res., 176, 2019, 108540.
Ateia, M., Attia, M.F., Maroli, A., Tharayil, N., Alexis, F., Whitehead, D.C., Karanfil, T., Rapid removal of poly-and perfluorinated alkyl substances by poly (ethylenimine)-functionalized cellulose microcrystals at environmentally relevant conditions. Environ. Sci. Technol. Lett. 5 (2018), 764–769.
Ateia, M., Maroli, A., Tharayil, N., Karanfil, T., The overlooked short-and ultrashort-chain poly-and perfluorinated substances: a review. Chemosphere 220 (2019), 866–882.
Azhar, M.R., Abid, H.R., Tade, M.O., Periasamy, V., Sun, H., Wang, S., Cascade applications of robust MIL-96 metal organic frameworks in environmental remediation: proof of concept. Chem. Eng. J. 341 (2018), 262–271.
Badruddoza, A.Z.M., Bhattarai, B., Suri, R.P.S., Environmentally friendly β-cyclodextrin–ionic liquid polyurethane-modified magnetic sorbent for the removal of PFOA, PFOS, and Cr (VI) from water. ACS Sustain. Chem. Eng. 5 (2017), 9223–9232.
Barton, H.F., Davis, A.K., Lee, D.T., Parsons, G.N., Solvothermal synthesis of MIL-96 and UiO-66-NH2 on atomic layer deposited metal oxide coatings on fiber mats. J. Vis. Exp., 2018, e57734, 10.3791/57734.
Benzaqui, M., Pillai, R.S., Sabetghadam, A., Benoit, V., Normand, P., Marrot, J., Menguy, N., Montero, D., Shepard, W., Tissot, A., Revisiting the aluminum trimesate-based MOF (MIL-96): from structure determination to the processing of mixed matrix membranes for CO2 capture. Chem. Mater. 29 (2017), 10326–10338.
Chang, Y., Huang, H., Wang, L., Li, Y., Zhong, C., Synergistic dual-Li+ sites for CO2 separation in metal-organic framework composites. Chem. Eng. J. 402:126201 (2020), 1–9, 10.1016/j.cej.2020.126201.
Chen, X., Vanangamudi, A., Wang, J., Jegatheesan, J., Mishra, V., Sharma, R., Gray, S.R., Kujawa, J., Kujawski, W., Wicaksana, F., Dumée, L.F., Direct contact membrane distillation for effective concentration of perfluoroalkyl substances - Impact of surface fouling and material stability. Water Res. 182:116010 (2020), 1–10, 10.1016/j.wares.2020.116010.
Chen, M.-J., Yang, A.-C., Wang, N.-H., Chiu, H.-C., Li, Y.-L., Kang, D.-Y., Lo, S.-L., Influence of crystal topology and interior surface functionality of metal-organic frameworks on PFOA sorption performance. Microporous Mesoporous Mater. 236 (2016), 202–210.
Cordner, A., Vanessa, Y., Schaider, L.A., Rudel, R.A., Richter, L., Brown, P., Guideline levels for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors. J. Expo. Sci. Environ. Epidemiol., 29, 2019, 157.
Deng, S., Niu, L., Bei, Y., Wang, B., Huang, J., Yu, G., Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization. Chemosphere 91 (2013), 124–130, 10.1016/j.chemosphere.2012.11.015.
Du, Z., Deng, S., Bei, Y., Huang, Q., Wang, B., Huang, J., Yu, G., Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review. J. Hazard Mater. 274 (2014), 443–454.
Du, Z., Deng, S., Chen, Y., Wang, B., Huang, J., Wang, Y., Yu, G., Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins. J. Hazard Mater. 286 (2015), 136–143.
Edomwonyi-Otu, L.C., Adelakun, D.O., Effect of heavy molecular weight polymer on quality of drinking water. Mater. Today Commun 15 (2018), 337–343.
Falcaro, P., Hill, A.J., Nairn, K.M., Jasieniak, J., Mardel, J.I., Bastow, T.J., Mayo, S.C., Gimona, M., Gomez, D., Whitfield, H.J., A new method to position and functionalize metal-organic framework crystals. Nat. Commun. Now., 2, 2011, 237.
Feng, X., Ye, M., Li, Y., Zhou, J., Sun, B., Zhu, Y., Zhu, L., Potential sources and sediment-pore water partitioning behaviors of emerging per/polyfluoroalkyl substances in the South Yellow Sea. J. Hazard Mater., 389, 2020, 122124.
Gagliano, E., Sgroi, M., Falciglia, P.P., Vagliasindi, F.G.A., Roccaro, P., Removal of poly-and perfluoroalkyl substances (PFAS) from water by adsorption: role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res., 171, 2020, 115381.
Gao, X., Chorover, J., Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy. Environ. Chem. 9 (2012), 148–157.
Gebald, C., Repond, N., Ruesch, T., Wurzbacher, J.A., Low-pressure drop structure of particle adsorbent bed for adsorption gas separation process. US10427086B2. 2019.
Guo, C., Zhang, Y., Guo, Y., Zhang, L., Zhang, Y., Wang, J., A general and efficient approach for tuning the crystal morphology of classical MOFs. Chem. Commun. 54 (2018), 252–255.
Han, Y., Liu, M., Li, K., Zuo, Y., Wei, Y., Xu, S., Zhang, G., Song, C., Zhang, Z., Guo, X., Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm 17 (2015), 6434–6440.
Haouas, M., Volkringer, C., Loiseau, T., Ferey, G., Taulelle, F., The extra-framework sub-lattice of the metal–organic framework MIL-110: a solid-state NMR investigation. Chem. Eur. J. 15 (2009), 3139–3146.
Haouas, M., Volkringer, C., Loiseau, T., Férey, G., Taulelle, F., In situ NMR, ex situ XRD and SEM study of the hydrothermal crystallization of nanoporous aluminum trimesates MIL-96, MIL-100, and MIL-110. Chem. Mater. 24 (2012), 2462–2471, 10.1021/cm300439e.
Hu, X.C., Andrews, D.Q., Lindstrom, A.B., Bruton, T.A., Schaider, L.A., Grandjean, P., Lohmann, R., Carignan, C.C., Blum, A., Balan, S.A., Detection of poly-and perfluoroalkyl substances (PFASs) in US drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ. Sci. Technol. Lett. 3 (2016), 344–350.
Huang, M., Jiao, J., Zhuang, P., Chen, X., Wang, J., Zhang, Y., Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population. Environ. Int. 119 (2018), 37–46.
Jun, B.-M., Hwang, H.S., Heo, J., Han, J., Jang, M., Sohn, J., Park, C.M., Yoon, Y., Removal of selected endocrine-disrupting compounds using Al-based metal organic framework: performance and mechanism of competitive adsorption. J. Ind. Eng. Chem. 79 (2019), 345–352.
Kumar, P.S., Korving, L., Keesman, K.J., van Loosdrecht, M.C.M., Witkamp, G.-J., Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chem. Eng. J. 358 (2019), 160–169.
Lee, J., Kwak, S.-Y., Tubular superstructures composed of α-Fe2O3 nanoparticles from pyrolysis of metal–organic frameworks in a confined space: effect on morphology, particle size, and magnetic properties. Cryst. Growth Des. 17 (2017), 4496–4500.
Li, L., Zheng, H., Wang, T., Cai, M., Wang, P., Perfluoroalkyl acids in surface seawater from the North Pacific to the Arctic ocean: contamination, distribution and transportation. Environ. Pollut. 238 (2018), 168–176.
Li, W., Zhao, H., Teasdale, P.R., John, R., Zhang, S., Synthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React. Funct. Polym. 52 (2002), 31–41.
Lin, Y., Kong, C., Chen, L., Facile synthesis of aluminum-based metal-organic frameworks with different morphologies and structures through an OH–assisted method. Chem. Asian J. 8 (2013), 1873–1878, 10.1002/asia.201300135.
Liu, D., Liu, Y., Dai, F., Zhao, J., Yang, K., Liu, C., Size-and morphology-controllable synthesis of MIL-96 (Al) by hydrolysis and coordination modulation of dual aluminium source and ligand systems. Dalton Trans. 44 (2015), 16421–16429.
Liu, K., Zhang, S., Hu, X., Zhang, K., Roy, A., Yu, G., Understanding the adsorption of PFOA on MIL-101 (Cr)-based anionic-exchange metal–organic frameworks: comparing DFT calculations with aqueous sorption experiments. Environ. Sci. Technol. 49 (2015), 8657–8665.
Loiseau, T., Lecroq, L., Volkringer, C., Marrot, J., Férey, G., Haouas, M., Taulelle, F., Bourrelly, S., Llewellyn, P.L., Latroche, M., MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units. J. Am. Chem. Soc. 128 (2006), 10223–10230, 10.1021/ja0621086.
Long, P., Wu, H., Zhao, Q., Wang, Y., Dong, J., Li, J., Solvent effect on the synthesis of MIL-96 (Cr) and MIL-100 (Cr). Microporous Mesoporous Mater. 142 (2011), 489–493.
Lorenzo, M., Campo, J., Suárez-Varela, M.M., Picó, Y., Occurrence, distribution and behavior of emerging persistent organic pollutants (POPs) in a Mediterranean wetland protected area. Sci. Total Environ. 646 (2019), 1009–1020.
Mancini, F.R., Cano-Sancho, G., Gambaretti, J., Marchand, P., Boutron-Ruault, M., Severi, G., Arveux, P., Antignac, J., Kvaskoff, M., Perfluorinated alkylated substances serum concentration and breast cancer risk: evidence from a nested case-control study in the French E3N cohort. Int. J. Canc. 146 (2020), 917–928.
Mandić, M., Todić, B., Živanić, L., Nikačević, N., Bukur, D.B., Effects of catalyst activity, particle size and shape, and process conditions on catalyst effectiveness and methane selectivity for Fischer–Tropsch reaction: a modeling study. Ind. Eng. Chem. Res. 56 (2017), 2733–2745.
McNamara, J.D., Franco, R., Mimna, R., Zappa, L., Comparison of activated carbons for removal of perfluorinated compounds from drinking water. Journal-American Water Work. Assoc., 110, 2018, E2–E14.
Morris, W., Wang, S., Cho, D., Auyeung, E., Li, P., Farha, O.K., Mirkin, C.A., Role of modulators in controlling the colloidal stability and polydispersity of the UiO-66 metal–organic framework. ACS Appl. Mater. Interfaces 9 (2017), 33413–33418.
Piekarski, D.J., Diaz, K.R., McNerney, M.W., Perfluoroalkyl chemicals in neurological health and disease: human concerns and animal models. Neurotoxicology. 2020.
Rashtian, J., Chavkin, D.E., Merhi, Z., Water and soil pollution as determinant of water and food quality/contamination and its impact on female fertility. Reprod. Biol. Endocrinol., 17, 2019, 5.
Rellegadla, S., Prajapat, G., Agrawal, A., Polymers for enhanced oil recovery: fundamentals and selection criteria. Appl. Microbiol. Biotechnol. 101 (2017), 4387–4402.
Riahi, K., Chaabane, S., Thayer, B., Ben, A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode. J. Saudi Chem. Soc., 21, 2017, S143–S152.
Richardson, S.D., Environmental mass spectrometry: emerging contaminants and current issues. Anal. Chem. 80 (2008), 4373–4402, 10.1021/ac202903d.
Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.Á., Prados-Joya, G., Ocampo-Pérez, R., Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93 (2013), 1268–1287, 10.1016/j.chemosphere.2013.07.059.
Scher, D.P., Kelly, J.E., Huset, C.A., Barry, K.M., Hoffbeck, R.W., Yingling, V.L., Messing, R.B., Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Chemosphere 196 (2018), 548–555.
Seoane, B., Castellanos, S., Dikhtiarenko, A., Kapteijn, F., Gascon, J., Multi-scale crystal engineering of metal organic frameworks. Coord. Chem. Rev. 307 (2016), 147–187.
Shih, K., Wang, F., Adsorption behavior of perfluorochemicals (PFCs) on boehmite: influence of solution chemistry. Procedia Environ. Sci. 18 (2013), 106–113.
Sindoro, M., Jee, A.Y., Granick, S., Shape-selected colloidal MOF crystals for aqueous use. Chem. Commun. 49 (2013), 9576–9578, 10.1039/c3cc45935g.
Sini, K., Bourgeois, D., Idouhar, M., Carboni, M., Meyer, D., Metal-organic frameworks cavity size effect on the extraction of organic pollutants. Mater. Lett. 250 (2019), 92–95.
Sini, K., Bourgeois, D., Idouhar, M., Carboni, M., Meyer, D., Metal-organic framework sorbents for the removal of perfluorinated compounds in an aqueous environment. New J. Inside Chem. 42 (2018), 17889–17894, 10.1039/c8nj03312a.
Sun, B., Ma, J., Sedlak, D.L., Chemisorption of perfluorooctanoic acid on powdered activated carbon initiated by persulfate in aqueous solution. Environ. Sci. Technol. 50 (2016), 7618–7624.
Sunderland, E.M., Hu, X.C., Dassuncao, C., Tokranov, A.K., Wagner, C.C., Allen, J.G., A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 29 (2019), 131–147.
Tiedeken, E.J., Tahar, A., McHugh, B., Rowan, N.J., Monitoring, sources, receptors, and control measures for three European Union watch list substances of emerging concern in receiving waters – a 20 year systematic review. Sci. Total Environ. 574 (2017), 1140–1163, 10.1016/j.scitotenv.2016.09.084.
Vaitsis, C., Sourkouni, G., Argirusis, C., Metal organic frameworks (MOFs) and ultrasound: a review. Ultrason. Sonochem. 52 (2019), 106–119.
Valsecchi, S., Conti, D., Crebelli, R., Polesello, S., Rusconi, M., Mazzoni, M., Preziosi, E., Carere, M., Lucentini, L., Ferretti, E., Deriving environmental quality standards for perfluorooctanoic acid (PFOA) and related short chain perfluorinated alkyl acids. J. Hazard Mater. 323 (2017), 84–98.
Vecitis, C.D., Park, H., Cheng, J., Mader, B.T., Hoffmann, M.R., Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Front. Environ. Sci. Eng. China 3 (2009), 129–151.
Wang, F., Guo, H., Chai, Y., Li, Y., Liu, C., The controlled regulation of morphology and size of HKUST-1 by “coordination modulation method.”. Microporous Mesoporous Mater. 173 (2013), 181–188.
Wang, F., Shih, K., Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations. Water Res. 45 (2011), 2925–2930.
Wang, W., Mi, X., Shi, H., Zhang, X., Zhou, Z., Li, C., Zhu, D., Adsorption behaviour and mechanism of the PFOS substitute OBS (sodium p-perfluorous nonenoxybenzene sulfonate) on activated carbon. R. Soc. Open Sci., 6, 2019, 191069.
Wang, Z., DeWitt, J.C., Higgins, C.P., Cousins, I.T., A never-ending story of per-and polyfluoroalkyl substances (PFASs)?. Environ. Sci. Technol. 51 (2017), 2508–2518.
Watanabe, S., Ohsaki, S., Hanafusa, T., Takada, K., Tanaka, H., Mae, K., Miyahara, M.T., Synthesis of zeolitic imidazolate framework-8 particles of controlled sizes, shapes, and gate adsorption characteristics using a central collision-type microreactor. Chem. Eng. J. 313 (2017), 724–733.
Xiao, L., Ling, Y., Alsbaiee, A., Li, C., Helbling, D.E., Dichtel, W.R., β-Cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations. J. Am. Chem. Soc. 139 (2017), 7689–7692, 10.1021/jacs.7b02381.
Xu, J., Liu, Z., Zhao, D., Gao, N., Fu, X., Enhanced adsorption of perfluorooctanoic acid (PFOA) from water by granular activated carbon supported magnetite nanoparticles. Sci. Total Environ. 723:137757 (2020), 1–9, 10.1016/j.scitotenv.2020.137757.
Xue, H., Chen, Q., Jiang, F., Yuan, D., Lv, G., Liang, L., Liu, L., Hong, M., A regenerative metal–organic framework for reversible uptake of Cd (II): from effective adsorption to in situ detection. Chem. Sci. 7 (2016), 5983–5988.
Yan, X., Lu, N., Fan, B., Bao, J., Pan, D., Wang, M., Li, R., Synthesis of mesoporous and tetragonal zirconia with inherited morphology from metal–organic frameworks. CrystEngComm 17 (2015), 6426–6433.
Yang, Y., Ding, Q., Yang, M., Wang, Y., Liu, N., Zhang, X., Magnetic ion exchange resin for effective removal of perfluorooctanoate from water: study of a response surface methodology and adsorption performances. Environ. Sci. Pollut. Res. 25 (2018), 29267–29278.
Zhao, H., Gao, J., Zhao, G., Fan, J., Wang, Yanbin, Wang, Yujing, Fabrication of novel SnO2-Sb/carbon aerogel electrode for ultrasonic electrochemical oxidation of perfluorooctanoate with high catalytic efficiency. Appl. Catal. B Environ. 136–137 (2013), 278–286, 10.1016/j.apcatb.2013.02.013.
Zhi, Y., Liu, J., Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions. Chemosphere 144 (2016), 1224–1232, 10.1016/j.chemosphere.2015.09.097.