[en] Solvent-induced enantioselectivity reversal is a rarely reported phenomenon in porous homochiral materials. Similar behavior has been studied in chiral high performance liquid chromatography, where minor modifications to the mobile phase can induce elution order reversal of two enantiomers on a chiral stationary phase column. We report the first instance of solvent-induced enantioselectivity reversal in a homochiral metal organic framework. Further, we highlight the complex enantioselectivity behavior of homochiral metal organic frameworks toward racemic mixtures in the presence of solvents through racemate-solvent enantioselectivity and loading experiments as well as enantiopure-solvent loading experiments. We hypothesize that this interesting selectivity reversal behavior is likely to be observed in other competitive adsorption, nonchiral selective processes involving a solvent.
Disciplines :
Chemical engineering
Author, co-author :
Slater, Benjamin D; Department of Chemical Engineering, Barrer Centre, Imperial College London, London, SW7 2AZ, UK ; CSIRO, Private Bag 10, Clayton South MDC, Clayton, Australia
Hill, Matthew R; CSIRO, Private Bag 10, Clayton South MDC, Clayton, Australia
LADEWIG, Bradley Paul ; University of Luxembourg ; Department of Chemical Engineering, Barrer Centre, Imperial College London, London, SW7 2AZ, UK ; Institute for Micro Process Engineering, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
External co-authors :
yes
Language :
English
Title :
Solvent-induced enantioselectivity reversal in a chiral metal organic framework.
Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995;378:703–6.
Banerjee D, Simon CM, Elsaidi SK, Haranczyk M, Thallapally PK. Xenon gas separation and storage using metal-organic frameworks. Chemistry 2018;4:466–94.
Barea E, Montoro C, Navarro JA. Toxic gas removal–metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev. 2014;43:5419–30.
Musto P, La Manna P, Pannico M, Mensitieri G, Gargiulo N, Caputo D. Molecular interactions of CO2 with the CuBTC metal organic framework: An FTIR study based on two-dimensional correlation spectroscopy. J Mol Struct. 2018;1166:326–33.
De D, Pal TK, Neogi S, Senthilkumar S, Das D, Gupta SS, Bharadwaj PK. A versatile Cu(II) metal-organic framework exhibiting high gas storage capacity with selectivity for CO2: conversion of CO2 to cyclic carbonate and other catalytic abilities. Chem Eur J. 2016;22:3387–96.
Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR. Carbon dioxide capture in metal-organic frameworks. Chem Rev. 2012;112:724–81.
Fang X, Zong B, Mao S. Metal-organic framework-based sensors for environmental contaminant sensing. Nanomicro Lett. 2018;10:64.
Zhao YW, Wang Y, Zhang XM. Homochiral MOF as circular dichroism sensor for enantioselective recognition on nature and chirality of unmodified amino acids. ACS Appl Mater Interfaces. 2017;9:20991–9.
Yang J, Trickett CA, Alahmadi SB, Alshammari AS, Yaghi OM. Calcium l-lactate frameworks as naturally degradable carriers for pesticides. J Am Chem Soc. 2017;139:8118–21.
Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G. Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc. 2008;130:6774–80.
Hartlieb KJ, Ferris DP, Holcroft JM, Kandela I, Stern CL, Nassar MS, Botros YY, Stoddart JF. Encapsulation of Ibuprofen in CD-MOF and related bioavailability studies. Mol Pharm. 2017;14:1831–9.
Zhao J, Li H, Han Y, Li R, Ding X, Feng X, Wang B. Chirality from substitution: Enantiomer separation via a modified metal-organic framework. J Mater Chem A. 2015;3:12145–8.
Tanaka K, Kawakita T, Morawiak M, Urbanczyk-Lipkowska Z. A novel homochiral metal-organic framework with an expanded open cage based on (: R)-3,3′-bis(6-carboxy-2-naphthyl)-2,2′-dihydroxy-1,1′-binaphthyl: synthesis, X-ray structure and efficient HPLC enantiomer separation. CrystEngComm. 2019;21:487–93.
Dybtsev DN, Nuzhdin AL, Chun H, Bryliakov KP, Talsi EP, Fedin VP, Kim K. A homochiral metal-organic material with permanent porosity, enantioselective sorption properties, and catalytic activity. Angew Chem Int Ed. 2006;45:916–20.
Xu ZX, Xiao Y, Zhang J. Synthesis of homochiral helical metal-organic frameworks based on lactate derivatives. J Coord Chem. 2016;69:1–7.
Xu ZX, Ma YL, Xiao Y, Zhang L, Zhang J. A series of homochiral helical metal-organic frameworks based on proline derivatives. Cryst Growth Des. 2015;15:5901–9.
Lv YK, Zhan CH, Jiang ZG, Feng YL. A chiral helical Mn(II) MOF showing unusual utg topology based on d-saccharic acid. Inorg Chem Commun. 2010;13:440–4.
Suh K, Yutkin MP, Dybtsev DN, Fedin VP, Kim K. Enantioselective sorption of alcohols in a homochiral metal-organic framework. Chem Commun. 2012;48:513–5.
Xie S-M, Yuan L-M. Recent development trends for chiral stationary phases based on chitosan derivatives, cyclofructan derivatives and chiral porous materials in high performance liquid chromatography. J Sep Sci. 2019;42:6–20.
Wang X, Lamprou A, Svec F, Bai Y, Liu H. Polymer-based monolithic column with incorporated chiral metal–organic framework for enantioseparation of methyl phenyl sulfoxide using nano-liquid chromatography. J Sep Sci. 2016;39:4544–8.
Liu Y, Deng M, Yu J, Jiang Z, Guo X. Capillary electrophoretic enantioseparation of basic drugs using a new single-isomer cyclodextrin derivative and theoretical study of the chiral recognition mechanism. J Sep Sci. 2016;39:1766–75.
Pirkle WH, Murray PG. An instance of temperature-dependent elution order of enantiomers from a chiral brush-type HPLC column. J High Resolut Chromatogr. 1993;16:285–8.
Yao B, Liu G, Kang S, Xiang C, Huang B, Weng W, Zeng Q. Reversal of elution order between enantiomers of binaphthol on an immobilized polysaccharide-based chiral stationary phase. Chromatographia 2011;74:625–31.
Ma S, Shen S, Lee H, Eriksson M, Zeng X, Xu J, Fandrick K, Yee N, Senanayake C, Grinberg N. Mechanistic studies on the chiral recognition of polysaccharide-based chiral stationary phases using liquid chromatography and vibrational circular dichroism: reversal of elution order of N-substituted alpha-methyl phenylalanine esters. J Chromatogr A. 2009;1216:3784–93.
Boer SA, White KF, Slater B, Emerson AJ, Knowles GP, Donald WA, Thornton AW, Ladewig BP, Bell TDM, Hill MR, Chaffee AL, Abrahams BF, Turner DR, Multifunctional A. Charge-neutral, chiral octahedral M12 L12 cage. Chem Eur J. 2019;25:8489–93.
Peng Y, Gong T, Zhang K, Lin X, Liu Y, Jiang J, Cui Y. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation. Nat Commun. 2014;5:4406.
Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Hoboken, NJ: Wiley; 2004.