Anti-fouling; Mixed matrix membranes; Phase inversion method; Polyethersulfone membrane; UiO-66 and UiO-66-NH2; Anti-foulings; Membrane performance; Metal-organic-frameworks; Mixed-matrix membranes; Phase-inversion method; Poly(ether sulfone); Polyethersulphones; Water contacts; Biochemistry; Materials Science (all); Physical and Theoretical Chemistry; Filtration and Separation; General Materials Science
Abstract :
[en] In this study, novel mixed matrix membranes (MMMs) were synthesised by adding metal organic frameworks (MOFs) (UiO-66 and UiO-66-NH2) to pristine and sulfonated polyethersulfone (PES). The differing synthetic method resulting in MMM where additives were grafted to the matrix polymer, or formed a natural interface, allowing the impact of these MMM features to be investigated. The composite membranes were characterised by FTIR, PXRD, water contact angle, porosity, pore size, etc. Membrane performance was investigated by water permeation flux, flux recovery ratio, fouling resistance and anti-fouling performance. The stability test was also conducted for all the prepared mixed matrix membranes. A higher reduction in the water contact angle was observed after adding both MOFs to the PES and sulfonated PES membranes compared to pristine PES membranes. An enhancement in membrane performance was observed by embedding the MOFs into PES membrane matrix, with flux increased remarkably (565 LMH for PES+UiO-66-NH2 at 5% loading and 487.1 LMH for SPES-UiO-66(10% binding) while the BSA rejection was still kept at a high level. By adding the MOFs into PES matrix, the flux recovery ratio was increased greatly (more than 99% for most mixed matrix membranes). The mixed matrix membranes showed higher resistance to protein adsorption compared to pristine PES membranes. After immersing the membranes in water for 3 months, 6 months and 12 months, both MOFs were stable and retained their structure. This study indicates that UiO-66 and UiO-66-NH2 are great candidates for designing long-term stable mixed matrix membranes (MMMs) for applications in water and wastewater treatment.
Disciplines :
Chemical engineering
Author, co-author :
Al-Shaeli, Muayad ; Monash University, Department of Chemical Engineering, Clayton, Australia
Smith, Stefan J.D.; Monash University, Department of Chemical Engineering, Clayton, Australia ; CSIRO, Clayton South MDC, Australia
Jiang, Shanxue; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom
Wang, Huanting; Monash University, Department of Chemical Engineering, Clayton, Australia
Zhang, Kaisong; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
LADEWIG, Bradley Paul ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Barrer Centre, Department of Chemical Engineering, Imperial College London, London, United Kingdom ; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
External co-authors :
yes
Language :
English
Title :
Long-term stable metal organic framework (MOF) based mixed matrix membranes for ultrafiltration
Yang, S., Zou, Q., Wang, T., Zhang, L., Effects of GO and MOF@GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane. J. Membr. Sci. 569 (2019), 48–59, 10.1016/j.memsci.2018.09.068.
Lee, K.P., Arnot, T.C., Mattia, D., A review of reverse osmosis membrane materials for desalination-development to date and future potential. J. Membr. Sci. 370:1–2 (2011), 1–22, 10.1016/j.memsci.2010.12.036.
Jiang, S., Li, Y., Ladewig, B.P., A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 595 (2017), 567–583, 10.1016/j.scitotenv.2017.03.235 http://linkinghub.elsevier.com/retrieve/pii/S0048969717307660.
Hube, S., Eskafi, M., Hrafnkelsdóttir, K.F., Bjarnadóttir, B., Bjarnadóttir, M.Á., Axelsdóttir, S., Wu, B., Direct membrane filtration for wastewater treatment and resource recovery: A review. Sci. Total Environ., 710, 2020, 136375, 10.1016/j.scitotenv.2019.136375.
Ahmad, T., Guria, C., Mandal, A., A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance. J. Water Process Eng., 36(June), 2020, 101289 https://doi.org/10.1016/j.jwpe.2020.101289.
Jiang, S., Ladewig, B., Green synthesis of polymeric membranes: Recent advances and future prospects. Curr. Opin. Green Sustain. Chem. 21 (2020), 1–8, 10.1016/j.cogsc.2019.07.002.
Wang, Z., Sahadevan, R., Crandall, C., Menkhaus, T.J., Fong, H., Hot-pressed PAN/PVDF hybrid electrospun nanofiber membranes for ultrafiltration. J. Membr. Sci., 611(May), 2020, 118327 https://doi.org/10.1016/j.memsci.2020.118327.
Qu, F., Liang, H., Zhou, J., Nan, J., Shao, S., Zhang, J., Li, G., Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from microcystis aeruginosa: Effects of membrane pore size and surface hydrophobicity. J. Membr. Sci. 449 (2014), 58–66, 10.1016/j.memsci.2013.07.070.
Shao, L., Wang, Z.X., Zhang, Y.L., Jiang, Z.X., Liu, Y.Y., A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. J. Membr. Sci. 461 (2014), 10–21, 10.1016/j.memsci.2014.03.006.
Lin, X., Wang, K., Feng, Y., Liu, J.Z., Fang, X., Xu, T., Wang, H., Composite ultrafiltration membranes from polymer and its quaternary phosphonium-functionalized derivative with enhanced water flux. J. Membr. Sci. 482 (2015), 67–75, 10.1016/j.memsci.2015.02.017.
Shi, X., Tal, G., Hankins, N.P., Gitis, V., Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process Eng. 1 (2014), 121–138, 10.1016/j.jwpe.2014.04.003.
Li, Q., Imbrogno, J., Belfort, G., Wang, X.L., Making polymeric membranes antifouling via “grafting from” polymerization of zwitterions. J. Appl. Polym. Sci., 132(21), 2015, 10.1002/app.41781.
Susanto, H., Ulbricht, M., High-performance thin-layer hydrogel composite membranes for ultrafiltration of natural organic matter. Water Res. 42:10–11 (2008), 2827–2835, 10.1016/j.watres.2008.02.017.
Shi, Q., Su, Y., Zhu, S., Li, C., Zhao, Y., Jiang, Z., A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane. J. Membr. Sci. 303:1–2 (2007), 204–212, 10.1016/j.memsci.2007.07.009.
Rahimi, M., Zinadini, S., Zinatizadeh, A.A., Vatanpour, V., Rajabi, L., Rahimi, Z., Hydrophilic goethite nanoparticle as a novel antifouling agent in fabrication of nanocomposite polyethersulfone membrane. J. Appl. Polym. Sci., 133(26), 2016, 10.1002/app.43592.
Yang, L., Tang, B., Wu, P., UF Membrane with highly improved flux by hydrophilic network between graphene oxide and brominated poly(2,6-dimethyl-1,4-phenylene oxide). J. Mater. Chem. A 2:43 (2014), 18562–18573, 10.1039/c4ta03790a.
Lee, S.J., Dilaver, M., Park, P.K., Kim, J.H., Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. J. Membr. Sci. 432 (2013), 97–105, 10.1016/j.memsci.2013.01.013.
Ba, C., Ladner, D.A., Economy, J., Using polyelectrolyte coatings to improve fouling resistance of a positively charged nanofiltration membrane. J. Membr. Sci. 347:1–2 (2010), 250–259, 10.1016/j.memsci.2009.10.031.
Susanti, R.F., Han, Y.S., Kim, J., Lee, Y.H., Carbonell, R.G., A new strategy for ultralow biofouling membranes: Uniform and ultrathin hydrophilic coatings using liquid carbon dioxide. J. Membr. Sci. 440 (2013), 88–97, 10.1016/j.memsci.2013.03.068.
Peyravi, M., Rahimpour, A., Jahanshahi, M., Javadi, A., Shockravi, A., Tailoring the surface properties of PES ultrafiltration membranes to reduce the fouling resistance using synthesized hydrophilic copolymer. Micropor. Mesopor. Mater. 160 (2012), 114–125, 10.1016/j.micromeso.2012.04.036.
Rahimpour, A., UV Photo-grafting of hydrophilic monomers onto the surface of nano-porous PES membranes for improving surface properties. Desalination 265:1–3 (2011), 93–101, 10.1016/j.desal.2010.07.037.
Seman, M.N., Khayet, M., Hilal, N., Comparison of two different UV-grafted nanofiltration membranes prepared for reduction of humic acid fouling using acrylic acid and N-vinylpyrrolidone. Desalination 287 (2012), 19–29, 10.1016/j.desal.2010.10.031.
Vatanpour, V., Madaeni, S.S., Khataee, A.R., Salehi, E., Zinadini, S., Monfared, H.A., TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 292 (2012), 19–29, 10.1016/j.desal.2012.02.006.
Vatanpour, V., Madaeni, S.S., Rajabi, L., Zinadini, S., Derakhshan, A.A., Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. J. Membr. Sci. 401–402 (2012), 132–143, 10.1016/j.memsci.2012.01.040.
Shi, Q., Su, Y., Chen, W., Peng, J., Nie, L., Zhang, L., Jiang, Z., Grafting short-chain amino acids onto membrane surfaces to resist protein fouling. J. Membr. Sci. 366:1–2 (2011), 398–404, 10.1016/j.memsci.2010.10.032.
Shi, F., Ma, Y., Ma, J., Wang, P., Sun, W., Preparation and characterization of PVDF/TiO2 hybrid membranes with ionic liquid modified nano-TiO2 particles. J. Membr. Sci. 427 (2013), 259–269, 10.1016/j.memsci.2012.10.007.
Zhang, X., Wang, Y., Liu, Y., Xu, J., Han, Y., Xu, X., Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Appl. Surf. Sci. 316:1 (2014), 333–340, 10.1016/j.apsusc.2014.08.004.
Rahimi, Z., Zinatizadeh, A.A.L., Zinadini, S., Preparation of high antibiofouling amino functionalized MWCNTs/pes nanocomposite ultrafiltration membrane for application in membrane bioreactor. J. Ind. Eng. Chem. 29 (2015), 366–374, 10.1016/j.jiec.2015.04.017.
Muhamad, M.S., Salim, M.R., Lau, W.J., Preparation and characterization of PES/SiO2 composite ultrafiltration membrane for advanced water treatment. Korean J. Chem. Eng. 32:11 (2015), 2319–2329, 10.1007/s11814-015-0065-3.
Tomczak, E., Blus, M., Preparation and permeability of PVDF membranes functionalized with graphene oxide. Desalin. Water Treat. 128 (2018), 20–26, 10.5004/dwt.2018.22570.
Sun, H., Tang, B., Wu, P., Development of hybrid ultrafiltration membranes with improved water separation properties using modified superhydrophilic metal-organic framework nanoparticles. ACS Appl. Mater. Interfaces 9:25 (2017), 21473–21484, 10.1021/acsami.7b05504.
Rowsell, J.L.C., Yaghi, O.M., Metal-organic frameworks: A new class of porous materials. Micropor. Mesopor. Mater. 73:1-2 (2004), 3–14, 10.1016/j.micromeso.2004.03.034.
Furukawa, H., Müller, U., Yaghi, O.M., “Heterogeneity within order” in metal-organic frameworks. Angew. Chem. Int. Edn 54:11 (2015), 3417–3430, 10.1002/anie.201410252.
Sorribas, S., Gorgojo, P., Téllez, C., Coronas, J., Livingston, A.G., High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 135:40 (2013), 15201–15208, 10.1021/ja407665w.
Low, Z.X., Razmjou, A., Wang, K., Gray, S., Duke, M., Wang, H., Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane. J. Membr. Sci. 460 (2014), 9–17, 10.1016/j.memsci.2014.02.026.
Li, Y., Wee, L.H., Volodin, A., Martens, J.A., Vankelecom, I.F.J., Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method. Chem. Commun. 51:5 (2015), 918–920, 10.1039/c4cc06699e.
Shahid, S., Nijmeijer, K., Nehache, S., Vankelecom, I., Deratani, A., Quemener, D., MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties. J. Membr. Sci. 492 (2015), 21–31, 10.1016/j.memsci.2015.05.015.
Sun, H., Tang, B., Wu, P., Hydrophilic hollow zeolitic imidazolate framework-8 modified ultrafiltration membranes with significantly enhanced water separation properties. J. Membr. Sci. 551 (2018), 283–293, 10.1016/j.memsci.2018.01.053.
Gholami, F., Zinadini, S., Zinatizadeh, A.A., Abbasi, A.R., TMU-5 metal-organic frameworks (MOFs) as a novel nanofiller for flux increment and fouling mitigation in PES ultrafiltration membrane. Sep. Purif. Technol. 194 (2018), 272–280, 10.1016/j.seppur.2017.11.054.
Jun, B.-M., Al-Hamadani, Y., Son, A., Park, C., Jang, M., Jang, A., Kim, N., Yoon, Y., Applications of metal-organic framework based membranes in water purification: A review. Sep. Purif. Technol., 247, 2020, 10.1016/j.seppur.2020.116947.
Klaysom, C., Ladewig, B.P., Lu, G.Q.M., Wang, L., Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes. J. Membr. Sci. 368:1–2 (2011), 48–53, 10.1016/j.memsci.2010.11.006.
Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., Rahimi, Z., High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane. Energy 125 (2017), 427–438, 10.1016/j.energy.2017.02.146.
Bai, P., Cao, X., Zhang, Y., Yin, Z., Wei, Q., Zhao, C., Modification of a polyethersulfone matrix by grafting functional groups and the research of biomedical performance. J. Biomater. Sci., Polym. Edn 21:12 (2010), 1559–1572, 10.1163/092050609X12519805626158.
Chen, J., Li, K., Chen, L., Liu, R., Huang, X., Ye, D., Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal-organic frameworks. Green Chem. 16:5 (2014), 2490–2499, 10.1039/c3gc42414f.
Hon Lau, C., Babarao, R., Hill, M.R., A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. Chem. Commun. 49:35 (2013), 3634–3636, 10.1039/c3cc40470f.
Kim, M., Cahill, J.F., Fei, H., Prather, K.A., Cohen, S.M., Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J. Am. Chem. Soc. 134:43 (2012), 18082–18088, 10.1021/ja3079219.
Schaate, A., Roy, P., Godt, A., Lippke, J., Waltz, F., Wiebcke, M., Behrens, P., Modulated synthesis of zr-based metal-organic frameworks: From nano to single crystals. Chemistry 17:24 (2011), 6643–6651, 10.1002/chem.201003211.
Lin, Y.C., Tseng, H.H., Wang, D.K., Uncovering the effects of PEG porogen molecular weight and concentration on ultrafiltration membrane properties and protein purification performance. J. Membr. Sci., 618(September 2020), 2021, 118729, 10.1016/j.memsci.2020.118729 https://doi.org/10.1016/j.memsci.2020.118729.
Ye, W., Liu, R., Chen, X., Chen, Q., Lin, J., Lin, X., Van der Bruggen, B., Zhao, S., Loose nanofiltration-based electrodialysis for highly efficient textile wastewater treatment. J. Membr. Sci., 608(March), 2020, 118182, 10.1016/j.memsci.2020.118182 https://doi.org/10.1016/j.memsci.2020.118182.
Tam, C., Tremblay, A., Membrane pore characterization-comparison between single and multicomponent solute probe techniques. J. Membr. Sci. 57:2–3 (1991), 271–287, 10.1016/S0376-7388(00)80683-3.
Cavka, J.H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., Lillerud, K.P., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130:42 (2008), 13850–13851, 10.1021/ja8057953.
Luan, Y., Qi, Y., Gao, H., Andriamitantsoa, R.S., Zheng, N., Wang, G., A general post-synthetic modification approach of amino-tagged metal-organic frameworks to access efficient catalysts for the knoevenagel condensation reaction. J. Mater. Chem. A 3:33 (2015), 17320–17331, 10.1039/c5ta00816f.
Biswas, S., Van Der Voort, P., A general strategy for the synthesis of functionalised UiO-66 frameworks: Characterisation, stability and CO2 adsorption properties. Eur. J. Inorg. Chem.(12), 2013, 2154–2160, 10.1002/ejic.201201228.
Ma, J., Guo, X., Ying, Y., Liu, D., Zhong, C., Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chem. Eng. J. 313 (2017), 890–898, 10.1016/j.cej.2016.10.127.
Kandiah, M., Nilsen, M.H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., Larabi, C., Quadrelli, E.A., Bonino, F., Lillerud, K.P., Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 22:24 (2010), 6632–6640, 10.1021/cm102601v.
Gascon, J., Aktay, U., Hernandez-Alonso, M.D., van Klink, G.P.M., Kapteijn, F., Amino-based metal-organic frameworks as stable, highly active basic catalysts. J. Catal. 261:1 (2009), 75–87, 10.1016/j.jcat.2008.11.010.
Jasuja, H., Walton, K.S., Experimental study of CO2, CH4, and water vapor adsorption on a dimethyl-functionalized UiO-66 framework. J. Phys. Chem. C 117:14 (2013), 7062–7068, 10.1021/jp311857e.
Yu, L., Zhang, Y., Zhang, B., Liu, J., Zhang, H., Song, C., Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. J. Membr. Sci. 447 (2013), 452–462, 10.1016/j.memsci.2013.07.042.
Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., Zangeneh, H., Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 453 (2014), 292–301, 10.1016/j.memsci.2013.10.070.
Rahimpour, A., Madaeni, S.S., Ghorbani, S., Shockravi, A., Mansourpanah, Y., The influence of sulfonated polyethersulfone (SPES) on surface nano-morphology and performance of polyethersulfone (PES) membrane. Appl. Surf. Sci. 256:6 (2010), 1825–1831, 10.1016/j.apsusc.2009.10.014.
Liu, X., Demir, N.K., Wu, Z., Li, K., Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137:22 (2015), 6999–7002, 10.1021/jacs.5b02276.
Ma, D., Peh, S.B., Han, G., Chen, S.B., Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: Toward enhancement of water flux and salt rejection. ACS Appl. Mater. Interfaces 9:8 (2017), 7523–7534, 10.1021/acsami.6b14223.
Wang, N., Zhang, G., Wang, L., Li, J., An, Q., Ji, S., Pervaporation dehydration of acetic acid using NH2-UiO-66/PEI mixed matrix membranes. Sep. Purif. Technol. 186 (2017), 20–27, 10.1016/j.seppur.2017.05.046.
Golpour, M., Pakizeh, M., Preparation and characterization of new PA-MOF/PPSU-GO membrane for the separation of KHI from water. Chem. Eng. J. 345 (2018), 221–232, 10.1016/j.cej.2018.03.154.
Jamshidifard, S., Koushkbaghi, S., Hosseini, S., Rezaei, S., Karamipour, A., Jafari rad, A., Irani, M., Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. J. Hard Mater. 368 (2019), 10–20, 10.1016/j.jhazmat.2019.01.024.
Li, S., Cui, Z., Zhang, L., He, B., Li, J., The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend membranes. J. Membr. Sci. 513 (2016), 1–11, 10.1016/j.memsci.2016.04.035.
Liu, Z., Mi, Z., Chen, C., Zhou, H., Zhao, X., Wang, D., Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method. Appl. Surf. Sci. 401 (2017), 69–78, 10.1016/j.apsusc.2016.12.228.
Behboudi, A., Jafarzadeh, Y., Yegani, R., Polyvinyl chloride/polycarbonate blend ultrafiltration membranes for water treatment. J. Membr. Sci. 534 (2017), 18–24, 10.1016/j.memsci.2017.04.011.
Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., Zangeneh, H., Beygzadeh, M., Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles. Desalination 349 (2014), 145–154, 10.1016/j.desal.2014.07.007.
Chen, X., Su, Y., Shen, F., Wan, Y., Antifouling ultrafiltration membranes made from PAN-b-PEG copolymers: Effect of copolymer composition and PEG chain length. J. Membr. Sci. 384:1–2 (2011), 44–51, 10.1016/j.memsci.2011.09.002.