Cross flows; Dye removal; Flow geometries; Gas separations; Metalorganic frameworks (MOFs); Spherical particle; Supported metals; Synthesised; Test-bench; Thin film membrane; Chemistry (all); Chemical Engineering (all); Industrial and Manufacturing Engineering; Carbon capture; Metal-organic frameworks; Molecular sieving membranes; Nanofiltration; General Chemical Engineering; General Chemistry
Abstract :
[en] The metal-organic framework (MOF) MIL-68(In)-NH2 was tested for dye removal from wastewater and carbon capture gas separation. MIL-68(In)-NH2 was synthesized as a neat, supported MOF thin film membrane and as spherical particles using pyridine as a modulator to shape the morphology. The neat MIL-68(In)-NH2 membranes were employed for dye removal in cross-flow geometry, demonstrating strong molecular sieving. MIL-68(In)-NH2 particles were used for electrospinning of poylethersulfone mixed-matrix membranes, applied in dead-end filtration with unprecedented adsorption values. Additionally, the neat MOF membranes were used for H2/CO2 and CO2/CH4 separation.
Disciplines :
Chemical engineering
Author, co-author :
Hosseini Monjezi, Bahram; Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Eggenstein-Leopoldshafen, Germany
Sapotta, Benedikt; Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Eggenstein-Leopoldshafen, Germany
Moulai, Sarah; Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Eggenstein-Leopoldshafen, Germany
Zhang, Jinju; Karlsruhe Institute of Technology (KIT), Institute for Micro Process Engineering (IMVT), Eggenstein-Leopoldshafen, Germany
Oestreich, Robert; Heinrich-Heine-University Düsseldorf, Institute for Inorganic and Structural Chemistry, Düsseldorf, Germany
LADEWIG, Bradley Paul ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Karlsruhe Institute of Technology (KIT), Institute for Micro Process Engineering (IMVT), Eggenstein-Leopoldshafen, Germany
Müller-Buschbaum, Klaus; Justus-Liebig-University Giessen, Institute of Inorganic and Analytical Chemistry, Giessen, Germany ; Justus-Liebig-University Giessen, Center of Materials Science (LAMA), Giessen, Germany
Janiak, Christoph; Heinrich-Heine-University Düsseldorf, Institute for Inorganic and Structural Chemistry, Düsseldorf, Germany
Hashem, Tawheed; Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Eggenstein-Leopoldshafen, Germany
Knebel, Alexander; Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Eggenstein-Leopoldshafen, Germany ; Friedrich Schiller University Jena, Otto Schott Institute of Materials Research, Jena, Germany
External co-authors :
yes
Language :
English
Title :
Metal-Organic Framework MIL-68(In)-NH2 on the Membrane Test Bench for Dye Removal and Carbon Capture
Deutsche Forschungsgemeinschaft Carl-Zeiss-Stiftung
Funding text :
A. Knebel, B. Hosseini Monjezi, C. Janiak, K. Müller‐Buschbaum, and R. Oestreich acknowledge funding through the Deutsche Forschungsgemeinschaft (DFG) within the Priority Program SPP 1928/2 COORNETs. A. Knebel acknowledges funding through the Carl Zeiss Foundation Breakthrough Program. T. Hashem and B. Sapotta acknowledge support through the Deutsche Forschungsgemeinschaft (DFG) within the Cluster “3DMM2O” funded by Germany's Excellence Strategy – 2082/1 – 390761711. Open access funding enabled and organized by Projekt DEAL.
B. Hosseini Monjezi, K. Kutonova, M. Tsotsalas, S. Henke, A. Knebel, Angew. Chem., Int. Ed. 2021, 60 (28), 15153–15164. DOI: https://doi.org/10.1002/anie.202015790
A. Knebel, A. Bavykina, S. J. Datta, L. Sundermann, L. Garzon-Tovar, Y. Lebedev, S. Durini, R. Ahmad, S. M. Kozlov, G. Shterk, M. Karunakaran, I. D. Carja, D. Simic, I. Weilert, M. Klüppel, U. Giese, L. Cavallo, M. Rueping, M. Eddaoudi, J. Caro, J. Gascon, Nat. Mater. 2020, 19 (12), 1346–1353. DOI: https://doi.org/10.1038/s41563-020-0764-y
Z. Wu, X. Yuan, H. Zhong, H. Wang, L. Jiang, G. Zeng, H. Wang, Z. Liu, Y. Li, J. Mol. Liq. 2017, 247, 215–229. DOI: https://doi.org/10.1016/j.molliq.2017.09.112
J. Lu, H. Zhang, J. Hou, X. Li, X. Hu, Y. Hu, C. D. Easton, Q. Li, C. Sun, A. W. Thornton, M. R. Hill, X. Zhang, G. Jiang, J. Z. Liu, A. J. Hill, B. D. Freeman, L. Jiang, H. Wang, Nat. Mater. 2020, 19 (7), 767–774. DOI: https://doi.org/10.1038/s41563-020-0634-7
E. P. Valadez Sánchez, H. Gliemann, K. Haas-Santo, C. Wöll, R. Dittmeyer, Chem. Ing. Tech. 2016, 88 (11), 1798–1805. DOI: https://doi.org/10.1002/cite.201600061
E. P. Valadez Sánchez, A. Knebel, L. Izquierdo Sánchez, M. Klumpp, C. Wöll, R. Dittmeyer, Langmuir 2020, 36 (29), 8444–8450. DOI: https://doi.org/10.1021/acs.langmuir.0c00875
S. Friebe, A. Mundstock, D. Unruh, F. Renz, J. Caro, J. Membr. Sci. 2016, 516, 185–193. DOI: https://doi.org/10.1016/j.memsci.2016.06.015
X. Dong, Q. Liu, A. Huang, J. Appl. Polym. Sci. 2016, 133 (22), 43485. DOI: https://doi.org/10.1002/app.43485
B. Seoane, V. Sebastián, C. Téllez, J. Coronas, CrystEngComm 2013, 15 (45), 9483–9490. DOI: https://doi.org/10.1039/c3ce40847g
J. Dechnik, C. J. Sumby, C. Janiak, Cryst. Growth Des. 2017, 17 (8), 4467–4488. DOI: https://doi.org/10.1021/acs.cgd.7b00595
J. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, C. J. Sumby, Angew. Chem., Int. Ed. 2017, 56 (32), 9292–9310. DOI: https://doi.org/10.1002/anie.201701109
Y. Qiao, Y. He, S. Wu, K. Jiang, X. Li, S. Guo, P. He, H. Zhou, ACS Energy Lett. 2018, 3 (2), 463–468. DOI: https://doi.org/10.1021/acsenergylett.8b00014
J. M. Stangl, D. Dietrich, A. E. Sedykh, C. Janiak, K. Müller-Buschbaum, J. Mater. Chem. C 2018, 6 (34), 9248–9257. DOI: https://doi.org/10.1039/C8TC01454J
H. A. Patel, N. Mansor, S. Gadipelli, D. J. L. Brett, Z. Guo, ACS Appl. Mater. Interfaces 2016, 8 (45), 30687–30691. DOI: https://doi.org/10.1021/acsami.6b12240
A. B. Kanj, R. Verma, M. Liu, J. Helfferich, W. Wenzel, L. Heinke, Nano Lett. 2019, 19 (3), 2114–2120. DOI: https://doi.org/10.1021/acs.nanolett.8b04694
H. Fan, J. Gu, H. Meng, A. Knebel, J. Caro, Angew. Chem., Int. Ed. 2018, 57 (15), 4083–4087. DOI: https://doi.org/10.1002/anie.201712816
H. Fan, M. Peng, I. Strauss, A. Mundstock, H. Meng, J. Caro, Nat. Commun. 2021, 12 (1), 38. DOI: https://doi.org/10.1038/s41467-020-20298-7
S. Zhou, Y. Wei, L. Li, Y. Duan, Q. Hou, L. Zhang, L.-X. Ding, J. Xue, H. Wang, J. Caro, Sci. Adv. 2018, 4 (10), eaau1393. DOI: https://doi.org/10.1126/sciadv.aau1393
T. Hashem, A. H. Ibrahim, C. Wöll, M. H. Alkordi, ACS Appl. Nano Mater. 2019, 2 (9), 5804–5808. DOI: https://doi.org/10.1021/acsanm.9b01263
J. Daniel-Gromke, N. Rensberg, V. Denysenko, W. Stinner, T. Schmalfuß, M. Scheftelowitz, M. Nelles, J. Liebetrau, Chem. Ing. Tech. 2018, 90 (1–2), 17–35. DOI: https://doi.org/10.1002/cite.201700077
A. Trattner, M. Höglinger, M.-G. Macherhammer, M. Sartory, Chem. Ing. Tech. 2021, 93 (4), 706–716. DOI: https://doi.org/10.1002/cite.202000197
G. Avci, I. Erucar, S. Keskin, ACS Appl. Mater. Interfaces 2020, 12 (37), 41567–41579. DOI: https://doi.org/10.1021/acsami.0c12330
H. Asadi, A. Alizadehdakhel, A. Ramazani, F. Dorosti, Polym. Bull. 2021, 78, 6953–6968. DOI: https://doi.org/10.1007/s00289-020-03459-y
N. Hanikel, M. S. Prévot, F. Fathieh, E. A. Kapustin, H. Lyu, H. Wang, N. J. Diercks, T. G. Glover, O. M. Yaghi, ACS Cent. Sci. 2019, 5 (10), 1699–1706. DOI: https://doi.org/10.1021/acscentsci.9b00745
C. Volkringer, M. Meddouri, T. Loiseau, N. Guillou, J. Marrot, G. Férey, M. Haouas, F. Taulelle, N. Audebrand, M. Latroche, Inorg. Chem. 2008, 47 (24), 11892–11901. DOI: https://doi.org/10.1021/ic801624v
C. Yang, J. Cheng, Y. Chen, Y. Hu, RSC Adv. 2016, 6 (66), 61703–61706. DOI: https://doi.org/10.1039/C6RA09021D
M. Saghanejhad Tehrani, R. Zare-Dorabei, RSC Adv. 2016, 6 (33), 27416–27425. DOI: https://doi.org/10.1039/C5RA28052D
L. Wu, M. Xue, S.-L. Qiu, G. Chaplais, A. Simon-Masseron, J. Patarin, Microporous Mesoporous Mater. 2012, 157, 75–81. DOI: https://doi.org/10.1016/j.micromeso.2011.12.034
D. A. Yaseen, M. Scholz, Int. J. Environ. Sci. Technol. 2019, 16 (2), 1193–1226. DOI: https://doi.org/10.1007/s13762-018-2130-z
A. Khutia, C. Janiak, Dalton Trans. 2014, 43 (3), 1338–1347. DOI: https://doi.org/10.1039/c3dt52365a
Z. Tang, C. Qiu, J. R. McCutcheon, K. Yoon, H. Ma, D. Fang, E. Lee, C. Kopp, B. S. Hsiao, B. Chu, J. Polym. Sci., Part B: Polym. Phys. 2009, 47 (22), 2288–2300. DOI: https://doi.org/10.1002/polb.21831
G. Darko, A. Goethals, N. Torto, K. de Clerck, Appl. Nanosci. 2016, 6 (6), 837–845. DOI: https://doi.org/10.1007/s13204-015-0504-9
H. Amer Hamzah, W. J. Gee, P. R. Raithby, S. J. Teat, M. F. Mahon, A. D. Burrows, Chem. – Eur. J. 2018, 24 (43), 11094–11102. DOI: https://doi.org/10.1002/chem.201801419
B. Zheng, F. Fu, L. L. Wang, L. Yang, Y. Zhu, H. Du, J. Phys. Chem. C 2018, 122 (13), 7203–7209. DOI: https://doi.org/10.1021/acs.jpcc.8b00018
L. Wu, W. Wang, R. Liu, G. Wu, H. Chen, R. Soc. Open Sci. 2018, 5 (12), 181378. DOI: https://doi.org/10.1098/rsos.181378
Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia, L. Xia, Chem. Eng. Res. Des. 2013, 91, 361–368.
E. Haque, V. Lo, A. I. Minett, A. T. Harris, T. L. Church, J. Mater. Chem. A 2014, 2, 193–203.
X. P. Luo, S. Y. Fu, Y. M. Du, J. Z. Guo, B. Li, Microporous Mesoporous Mater. 2017, 237, 268–274.
Q. Chen, Q. He, M. Lv, Y. Xu, H. Yang, X. Liu, F. Wei, Appl. Surf. Sci. 2015, 327, 77–85.
C. H. Lin, C. H. Gung, J. J. Sun, S. Y. Suen, J. Membr. Sci. 2014, 471, 285–298.
B. Baheri, R. Ghahremani, M. Peydayesh, M. Shahverdi, T. Mohammadi, Res. Chem. Intermed. 2016, 42, 5309–5328.
A. Aluigi, F. Rombaldoni, C. Tonetti, L. Jannoke, J. Hazard. Mater. 2014, 268, 156–165.
Z. Sun, T. Feng, Z. Zhou, H. Wu, e-Polym. 2021, 21, 156–165.
B. Zhao, Y. Wang, X. Li, B. Sun, Z. Jiang, C. Wang, Colloid Surf., B 2015, 136, 375–382.
G. Crini, H. N. Peindy, Dyes Pigm. 2016, 70, 204–211.
J. S. Yang, S. Y. Han, L. Yang, H. C. Zheng, J. Chem. Technol. Biotechnol. 2016, 91, 618–623.
M. S. Tehrani, R. Zare-Dorabei, Spectrochim. Acta, Part A 2016, 160, 8–18.
J. Abdi, M. Vossoughi, N. M. Mahmoodi, I. Alemzadeh, Chem. Eng. J. 2017, 326, 1145–1158.
R. Zhang, S. Ji, N. Wang, L. Wang, G. Zhang, J. R. Li, Angew. Chem., Int. Ed. 2014, 53, 9775–9779.
N. Wang, S. Ji, G. Zhang, J. Li, L. Wang, Chem. Eng. J. 2012, 213, 318–329.
S. Yu, Z. Chen, Q. Cheng, Z. Lü, M. Liu, C. Gao, Sep. Purif. Technol. 2012, 88, 121–129.
P. Daraei, S. Madaeni, E. Salehi, N. Ghaemi, H. S. Ghari, M. A. Khadivi, E. Rostami, J. Membr. Sci. 2013, 436, 97–108.
H. Tang, S. Ji, L. Gong, H. Guo, G. Zhang, Polym. Chem. 2013, 4, 5621–5628.
N. Wang, R. Zhang, T. Liu, H. Shen, S. Ji, J. R. Li, AIChE J. 2016, 62, 538–546.
N. Wang, X. Li, L. Wang, L. Zhang, G. Zhang, S. Ji, ACS Appl. Mater. Interfaces 2016, 8, 21979–21983.
L. Wang, M. Fang, J. Liu, J. He, L. Deng, J. Li, J. Lei, RSC Adv. 2015, 5, 50942–50954.
Q. Chen, P. Yu, W. Huang, S. Yu, M. Liu, C. Gao, J. Membr. Sci. 2015, 492, 312–321.
H. P. Srivastava, G. Arthanareeswaran, N. Anantharaman, V. M. Starov, Desalination 2011, 282, 87–94.
L. Wang, N. Wang, G. Zhang, S. Ji, AIChE J. 2013, 59, 3834–3842.
M. Liu, Q. Chen, K. Lu, W. Huang, Z. Lü, C. Zhou, S. Yu, C. Gao, Sep. Purif. Technol. 2017, 173, 135–143.
J. Wang, L. Qin, J. Lin, J. Zhu, Y. Zhang, J. Liu, B. V. Bruggen, Chem. Eng. J. 2017, 323, 56–63.
Y. Li, L. H. Wee, A. Volodin, J. A. Martens, I. F. J. Vankelecom, Chem. Commun. 2015, 51, 918–920.
P. Chen, X. Ma, Z. Zhong, F. Zhang, W. Xing, Y. Fan, Desalination 2017, 404, 102–111.
Y. Zhang, Y. Su, W. Chen, J. Peng, Y. Dong, Z. Jiang, Ind. Eng. Chem. Res. 2011, 50, 4678–4685.
Y. Zhang, Y. Su, J. Peng, X. Zhao, J. Liu, J. Zhao, Z. Jiang, J. Membr. Sci. 2013, 429, 235–242.
Q. Zhang, H. Wang, S. Zhang, L. Dai, J. Membr. Sci. 2011, 375, 191–197.
A. V. R. Reddy, J. J. Trivedi, C. V. Devmurari, D. J. Mohan, P. Singh, A. P. Rao, S. V. Joshi, P. K. Ghosh, Desalination 2005, 183, 301–306.
A. Akbari, S. Desclaux, J. C. Rouch, P. Aptel, J. C. Remigy, J. Membr. Sci. 2006, 286, 342–350.
M. Amini, M. Arami, N. Mohammad, A. Akbari, Desalination 2011, 267, 107–113.
S. U. Hong, M. L. Bruening, J. Membr. Sci. 2006, 280, 1–5.