Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
MaDi: Learning to Mask Distractions for Generalization in Visual Deep Reinforcement Learning
Grooten, Bram; Tomilin, Tristan; Vasan, Gautham et al.
2024In AAMAS '24: Proceedings of the 2024 International Conference on Autonomous Agents and Multiagent Systems
Peer reviewed
 

Documents


Texte intégral
2312.15339.pdf
Postprint Auteur (16.29 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Science - Learning; Computer Science - Artificial Intelligence; Computer Science - Computer Vision and Pattern Recognition; Computer Science - Robotics; Deep Reinforcement Learning
Résumé :
[en] The visual world provides an abundance of information, but many input pixels received by agents often contain distracting stimuli. Autonomous agents need the ability to distinguish useful information from task-irrelevant perceptions, enabling them to generalize to unseen environments with new distractions. Existing works approach this problem using data augmentation or large auxiliary networks with additional loss functions. We introduce MaDi, a novel algorithm that learns to mask distractions by the reward signal only. In MaDi, the conventional actor-critic structure of deep reinforcement learning agents is complemented by a small third sibling, the Masker. This lightweight neural network generates a mask to determine what the actor and critic will receive, such that they can focus on learning the task. The masks are created dynamically, depending on the current input. We run experiments on the DeepMind Control Generalization Benchmark, the Distracting Control Suite, and a real UR5 Robotic Arm. Our algorithm improves the agent's focus with useful masks, while its efficient Masker network only adds 0.2% more parameters to the original structure, in contrast to previous work. MaDi consistently achieves generalization results better than or competitive to state-of-the-art methods.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Grooten, Bram;  Eindhoven University of Technology [NL]
Tomilin, Tristan;  Eindhoven University of Technology [NL]
Vasan, Gautham;  UAlberta - University of Alberta [CA]
Taylor, Matthew E.;  UAlberta - University of Alberta [CA] ; Alberta Machine Intelligence Institute (Amii)
Mahmood, Rupam A.;  UAlberta - University of Alberta [CA] ; Alberta Machine Intelligence Institute (Amii)
Fang, Meng;  University of Liverpool [GB]
Pechenizkiy, Mykola;  Eindhoven University of Technology [NL]
MOCANU, Decebal Constantin  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS) ; Eindhoven University of Technology [NL]
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
MaDi: Learning to Mask Distractions for Generalization in Visual Deep Reinforcement Learning
Date de publication/diffusion :
06 mai 2024
Nom de la manifestation :
AAMAS '24: 2024 International Conference on Autonomous Agents and Multiagent Systems
Date de la manifestation :
from 6 to 10 May 2024
Manifestation à portée :
International
Titre de l'ouvrage principal :
AAMAS '24: Proceedings of the 2024 International Conference on Autonomous Agents and Multiagent Systems
Maison d'édition :
International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
Commentaire :
Accepted as full-paper (oral) at AAMAS 2024. Code is available at https://github.com/bramgrooten/mask-distractions and see our 40-second video at https://youtu.be/2oImF0h1k48
Disponible sur ORBilu :
depuis le 15 janvier 2024

Statistiques


Nombre de vues
262 (dont 1 Unilu)
Nombre de téléchargements
84 (dont 0 Unilu)

citations Scopus®
 
8
citations Scopus®
sans auto-citations
7

Bibliographie


Publications similaires



Contacter ORBilu