Applications; Energy storage; Grey box simulation model; Integrated energy system simulations; Model parametrization; Modeling; Parameter optimization process; Redox flow battery; Vanadium redox flow battery; Energy system simulations; Gray box simulation model; Grey-box; Integrated energy system simulation; Integrated energy systems; Parameter optimization; Simulation model; Vanadium redox flow batteries; Energy Engineering and Power Technology; Electrochemistry; Electrical and Electronic Engineering
Abstract :
[en] Accurately predicting battery behavior, while using low input data, is highly desirable in embedded simulation architectures like grid or integrated energy system analysis. Currently, the available vanadium redox flow battery (VRFB) models achieve highly accurate predictions of electrochemical behavior or control algorithms, while the optimization of the required input data scope is neglected. In this study, a parametrization tool for a DC grey box simulation model is developed using measurements with a 10 kW/100 kWh VRFB. An objective function is applied to optimize the required input data scope while analyzing simulation accuracy. The model is based on a differential-algebraic system, and an optimization process allows model parameter estimation and verification while reducing the input data scope. Current losses, theoretical storage capacity, open circuit voltage, and ohmic cell resistance are used as fitting parameters. Internal electrochemical phenomena are represented by a self-discharge current while material related losses are represented by a changing ohmic resistance. Upon reducing input data the deviation between the model and measurements shows an insignificant increase of 2% even for a 60% input data reduction. The developed grey box model is easily adaptable to other VRFB and is highly integrable into an existing energy architecture.
Disciplines :
Mechanical engineering
Author, co-author :
Zugschwert, Christina ; Technology Centre Energy, University of Applied Sciences Landshut, Ruhstorf an der Rott, Germany ; Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg, Luxembourg
Dundálek, Jan; Department of Chemical Engineering, University of Chemistry and Technology, Praha 6, Czech Republic ; New Technologies—Research Centre, University of West Bohemia, Plzeň, Czech Republic
LEYER, Stephan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Hadji-Minaglou, Jean-Régis ; Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg, Luxembourg
Kosek, Juraj ; Department of Chemical Engineering, University of Chemistry and Technology, Praha 6, Czech Republic ; New Technologies—Research Centre, University of West Bohemia, Plzeň, Czech Republic
Pettinger, Karl-Heinz; Technology Centre Energy, University of Applied Sciences Landshut, Ruhstorf an der Rott, Germany
External co-authors :
yes
Language :
English
Title :
The effect of input parameter variation on the accuracy of a vanadium redox flow battery simulation model
Aneke, M.; Wang, M. Energy storage technologies and real life applications—A state of the art review. Appl. Energy 2016, 179, 350–377. [CrossRef]
Maria, S.-K.; Miron, R.; Robert, R. All-Vanadium Redox Battery. U.S. Patent US4786567A, 11 February 1986.
Skyllas-Kazacos, M.; Kazacos, G.; Poon, G.; Verseema, H. Recent advances with UNSW vanadium-based redox flow batteries. Int. J. Energy Res. 2010, 34, 182–189. [CrossRef]
Skyllas-Kazacos, M.; Chakrabarti, M.H.; Hajimolana, S.A.; Mjalli, F.S.; Saleem, M. Progress in Flow Battery Research and Development. J. Electrochem. Soc. 2011, 158, R55–R79. [CrossRef]
Roznyatovskaya, N.; Noack, J.; Pinkwart, K.; Tübke, J. Aspects of electron transfer processes in vanadium redox-flow batteries. Curr. Opin. Electrochem. 2020, 19, 42–48. [CrossRef]
Charvát, J.; Mazúr, P.; Dundálek, J.; Pocedič, J.; Vrána, J.; Mrlík, J.; Kosek, J.; Dinter, S. Performance enhancement of vanadium redox flow battery by optimized electrode compression and operational conditions. J. Energy Storage 2020, 30, 101468. [CrossRef]
Messaggi, M.; Rabissi, C.; Gambaro, C.; Meda, L.; Casalegno, A.; Zago, M. Investigation of vanadium redox flow batteries performance through locally-resolved polarisation curves and impedance spectroscopy: Insight into the effects of electrolyte, flow field geometry and electrode thickness. J. Power Sources 2020, 449, 227588. [CrossRef]
Mazur, P.; Mrlik, J.; Pocedic, J.; Vrana, J.; Dundalek, J.; Kosek, J.; Bystron, T. Effect of graphite felt properties on the long-term durability of negative electrode in vanadium redox flow battery. J. Power Sources 2019, 414, 354–365. [CrossRef]
König, S.; Suriyah, M.R.; Leibfried, T. Innovative model-based flow rate optimization for vanadium redox flow batteries. J. Power Sources 2016, 333, 134–144. [CrossRef]
Lucas, A.; Chondrogiannis, S. Smart grid energy storage controller for frequency regulation and peak shaving, using a vanadium redox flow battery. Int. J. Electr. Power Energy Syst. 2016, 80, 26–36. [CrossRef]
Müller, M.; Viernstein, L.; Truong, C.N.; Eiting, A.; Hesse, H.C.; Witzmann, R.; Jossen, A. Evaluation of grid-level adaptability for stationary battery energy storage system applications in Europe. J. Energy Storage 2017, 9, 1–11. [CrossRef]
Li, Y.; Zhang, X.; Bao, J.; Skyllas-Kazacos, M. Control of electrolyte flow rate for the vanadium redox flow battery by gain scheduling. J. Energy Storage 2017, 14, 125–133. [CrossRef]
Yang, W.W.; Yan, F.Y.; Qu, Z.G.; He, Y.L. Effect of various strategies of soc-dependent operating current on performance of a vanadium redox flow battery. Electrochim. Acta 2018, 259, 772–782. [CrossRef]
Guarnieri, M.; Trovò, A.; Picano, F. Enhancing the efficiency of kW-class vanadium redox flow batteries by flow factor modulation: An experimental method. Appl. Energy 2020, 262, 114532. [CrossRef]
Pugach, M.; Parsegov, S.; Gryazina, E.; Bischi, A. Output feedback control of electrolyte flow rate for Vanadium Redox Flow Batteries. J. Power Sources 2020, 455, 227916. [CrossRef]
Viswanathan, V.; Crawford, A.; Stephenson, D.; Kim, S.; Wang, W.; Li, B.; Coffey, G.; Thomsen, E.; Graff, G.; Balducci, P.; et al. Cost and performance model for redox flow batteries. J. Power Sources 2014, 247, 1040–1051. [CrossRef]
Minke, C.; Kunz, U.; Turek, T. Techno-economic assessment of novel vanadium redox flow batteries with large-area cells. J. Power Sources 2017, 361, 105–114. [CrossRef]
Rodby, K.E.; Carney, T.J.; Ashraf Gandomi, Y.; Barton, J.L.; Darling, R.M.; Brushett, F.R. Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing. J. Power Sources 2020, 460, 227958. [CrossRef]
Li, M.-J.; Zhao, W.; Chen, X.; Tao, W.-Q. Economic analysis of a new class of vanadium redox-flow battery for medium-and large-scale energy storage in commercial applications with renewable energy. Appl. Therm. Eng. 2017, 114, 802–814. [CrossRef]
Parasuraman, A.; Lim, T.M.; Menictas, C.; Skyllas-Kazacos, M. Review of material research and development for vanadium redox flow battery applications. Electrochim. Acta 2013, 101, 27–40. [CrossRef]
Sarkar, T.; Bhattacharjee, A.; Samanta, H.; Bhattacharya, K.; Saha, H. Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability. Energy Convers. Manag. 2019, 191, 102–118. [CrossRef]
Gonçalves, J.; Martins, A.; Neves, L. Methodology for real impact assessment of the best location of distributed electric energy storage. Sustain. Cities Soc. 2016, 26, 531–542. [CrossRef]
Ippolito, M.G.; Di Silvestre, M.L.; Sanseverino, E.R.; Zizzo, G.; Graditi, G. Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios. Energy 2014, 64, 648–662. [CrossRef]
Duun-Henriksen, A.K.; Schmidt, S.; Røge, R.M.; Møller, J.B.; Nørgaard, K.; Jørgensen, J.B.; Madsen, H. Model identification using stochastic differential equation grey-box models in diabetes. J. Diabetes Sci. Technol. 2013, 7, 431–440. [CrossRef]
Baccino, F.; Marinelli, M.; Nørgård, P.; Silvestro, F. Experimental testing procedures and dynamic model validation for vanadium redox flow battery storage system. J. Power Sources 2014, 254, 277–286. [CrossRef]
DAgostino, R.; Baumann, L.; Damiano, A.; Boggasch, E. A Vanadium-Redox-Flow-Battery Model for Evaluation of Distributed Storage Implementation in Residential Energy Systems. IEEE Trans. Energy Convers. 2015, 30, 421–430. [CrossRef]
Bhattacharjee, A.; Saha, H. Design and experimental validation of a generalised electrical equivalent model of Vanadium Redox Flow Battery for interfacing with renewable energy sources. J. Energy Storage 2017, 13, 220–232. [CrossRef]
Turker, B.; Klein, S.A.; Hammer, E.-M.; Lenz, B.; Komsiyska, L. Modeling a vanadium redox flow battery system for large scale applications. Energy Convers. Manag. 2013, 66, 26–32. [CrossRef]
Chahwan, J.; Abbey, C.; Joos, G. VRB Modelling for the Study of Output Terminal Voltages, Internal Losses and Performance. In Proceedings of the IEEE Canada Electrical Power Conference, Montreal, QC, Canada, 25–26 October 2007; pp. 387–392. [CrossRef]
Qiu, X.; Nguyen, T.A.; Guggenberger, J.D.; Crow, M.L.; Elmore, A.C. A Field Validated Model of a Vanadium Redox Flow Battery for Microgrids. IEEE Trans. Smart Grid 2014, 5, 1592–1601. [CrossRef]
Skyllas-Kazacos, M.; Kazacos, M. State of charge monitoring methods for vanadium redox flow battery control. J. Power Sources 2011, 196, 8822–8827. [CrossRef]
Ontiveros, L.J.; Mercado, P.E. Modeling of a Vanadium Redox Flow Battery for power system dynamic studies. Int. J. Hydrogen Energy 2014, 39, 8720–8727. [CrossRef]
Schreiber, M.; Harrer, M.; Whitehead, A.; Bucsich, H.; Dragschitz, M.; Seifert, E.; Tymciw, P. Practical and commercial issues in the design and manufacture of vanadium flow batteries. J. Power Sources 2012, 206, 483–489. [CrossRef]
Trovò, A.; Picano, F.; Guarnieri, M. Comparison of energy losses in a 9 kW vanadium redox flow battery. J. Power Sources 2019, 440, 227144. [CrossRef]
Kurzweil, P.; Dietlmeier, O. Elektrochemische Speicher. In Superkondensatoren, Batterien, Elektrolyse-Wasserstoff, Rechtliche Grundla-gen; Springer: Wiesbaden, Germany, 2015; ISBN 978-3-658-10899-1.
König, S. Model-Based Design and Optimization of Vanadium Redox Flow Batteries. Ph.D. Thesis, Karlsruher Instituts für Technologie, Karlsruhe, Germany, 2017.
Hudak, N.S. Practical thermodynamic quantities for aqueous vanadium-and iron-based flow batteries. J. Power Sources 2014, 269, 962–974. [CrossRef]
Corcuera, S.; Skyllas-Kazacos, M. State-of-Charge Monitoring and Electrolyte Rebalancing Methods for the Vanadium Redox Flow Battery. Eur. Chem. Bull. 2012, 1, 511–519. [CrossRef]
Fathima, A.H.; Palanismay, K. Modeling and Operation of a Vanadium Redox Flow Battery for PV Applications. Energy Procedia 2017, 117, 607–614. [CrossRef]
Kjelstrup, S.; Bedeaux, D. Non-Equilibrium Thermodynamics of Heterogeneous Systems; World Scientific: Hackensack, NJ, USA, 2008; ISBN 978-981-277-913-7.
Molugaram, K.; Rao, G.S. Statistical Techniques for Transportation Engineering; Butterworth-Heinemann: Oxford, UK, 2017; ISBN 978-0-12-811555-8.