[en] Biological methanation is driven by anaerobic methanogenic archaea, cultivated in different media, which consist of multiple macro and micro nutrients. In addition, a reducing agent is needed to lower the oxidation-reduction potential (ORP) and enable the growth of oxygen-sensitive organisms. Until now, sodium sulfide (Na2S) has been used mainly for this purpose based on earlier published articles at the beginning of anaerobic microbiology research. In a continuation of earlier investigations, in this study, the usage of alternative reducing agents like sodium dithionite (Na2S2O4) and L-Cysteine-HCl shows that similar results can be obtained with fewer environmental and hazardous impacts. Therefore, a newly developed comparison method was used for the cultivation of Methanothermobacter marburgensis. The median methane evolution rate (MER) for the alternatives was similar compared to Na2S at different concentrations (0.5, 0.25 and 0.1 g/L). However, the use of 0.25 g/L Na2S2O4 or 0.1 g/L L-Cys-HCl led to stable MER values over consecutive batches compared to Na2S. It was also shown that a lower concentration of reducing agent leads to a higher MER. In conclusion, Na2S2O4 or L-Cys-HCl can be used as a non-corrosive and non-toxic reducing agent for ex situ biological methanation. Economically, Na2S2O4 is cheaper, which is particularly interesting for scale-up purposes.
Disciplines :
Energy
Author, co-author :
Mock, Maximilian Peter ; Technology Centre Energy, University of Applied Sciences Landshut, Wiesenweg 1, 94099 Ruhstorf an der Rott, Germany ; Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, 1359 Luxembourg, Luxembourg
Ochi, Rayen; Technology Centre Energy, University of Applied Sciences Landshut, Wiesenweg 1, 94099 Ruhstorf an der Rott, Germany ; European Campus Rottal-Inn, Deggendorf Institut of Technology, Max-Breiherr-Straße 32, 84347 Pfarrkirchen, Germany
Bieringer, Maria ; Technology Centre Energy, University of Applied Sciences Landshut, Wiesenweg 1, 94099 Ruhstorf an der Rott, Germany
Bieringer, Tim ; Technology Centre Energy, University of Applied Sciences Landshut, Wiesenweg 1, 94099 Ruhstorf an der Rott, Germany
Brotsack, Raimund ; Technology Centre Energy, University of Applied Sciences Landshut, Wiesenweg 1, 94099 Ruhstorf an der Rott, Germany ; European Campus Rottal-Inn, Deggendorf Institut of Technology, Max-Breiherr-Straße 32, 84347 Pfarrkirchen, Germany
LEYER, Stephan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
External co-authors :
yes
Language :
English
Title :
Comparison of Various Reducing Agents for Methane Production by Methanothermobacter marburgensis.
Publication date :
10 October 2023
Journal title :
Microorganisms
eISSN :
2076-2607
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
International Energy Agency Security of Clean Energy Transitions OECD Paris, France 2021 10.1787/cc14cdd2-en
International Renewable Energy Agency Bioenergy for the Energy Transition: Ensuring Sustainability and Overcoming Barriers International Renewable Energy Agency Masdar City, United Arab Emirates 2022
Kaltschmitt M. Hartmann H. Hofbauer H. Energie aus Biomasse: Grundlagen, Techniken und Verfahren Springer Berlin/Heidelberg, Germany 2016 10.1007/978-3-662-47438-9
Fuchs G. Stupperich E. Thauer R.K. Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum Arch. Microbiol. 1978 117 61 66 10.1007/BF00689352 678012
Zeikus J.G. Ben-Bassat A. Hegge P.W. Microbiology of methanogenesis in thermal, volcanic environments J. Bacteriol. 1980 143 432 440 10.1128/jb.143.1.432-440.1980 7400098
Zeikus J.G. The biology of methanogenic bacteria Bacteriol. Rev. 1977 41 514 541 10.1128/br.41.2.514-541.1977 329834
Zeikus J.G. Wolee R.S. Methanobacterium thermoautotrophicus sp. n., an Anaerobic, Autotrophic, Extreme Thermophile J. Bacteriol. 1972 109 707 713 10.1128/jb.109.2.707-713.1972
Brandis A. Thauer R.K. Stetter K.O. Relatedness of Strains H and Marburg of Methanobacterium thermoautotrophicum Zentralblatt Bakteriol. Mikrobiol. Hyg. Abt. Orig. Allg. Angew. Ökol. Mikrobiol. 1981 2 311 317 10.1016/S0721-9571(81)80023-3
Wasserfallen A. Nölling J. Pfister P. Reeve J. Conway de Macario E. Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov Int. J. Syst. Evol. Microbiol. 2000 50 43 53 10.1099/00207713-50-1-43
Boone D.R. Whitman W.B. Rouvière P. Diversity and Taxonomy of Methanogens Methanogenesis: Ecology, Physiology, Biochemistry & Genetics Ferry J.G. Chapman & Hall Microbiology Series Springer Boston, MA, USA 1993 35 80 10.1007/978-1-4615-2391-8_2
Mylroie R.L. Hungate R.E. Experiments on the methane bacteria in sludge Can. J. Microbiol. 1954 1 55 64 10.1139/m55-008
Hungate R. Chapter IV A Roll Tube Method for Cultivation of Strict Anaerobes Methods in Microbiology Elsevier Amsterdam, The Netherlands 1969 Volume 3 117 132 10.1016/S0580-9517(08)70503-8
Balch W.E. Wolfe R.S. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere Appl. Environ. Microbiol. 1976 32 781 791 10.1128/aem.32.6.781-791.1976
Reddy C.A. Methods for General and Molecular Microbiology 3rd ed. OCLC: Ocn124164032 ASM Press Washington, DC, USA 2007
Widdel F. Bak F. Gram-Negative Mesophilic Sulfate-Reducing Bacteria The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications Balows A. Trüper H.G. Dworkin M. Harder W. Schleifer K.H. Springer New York, NY, USA 1992 3352 3378 10.1007/978-1-4757-2191-1_21
Bast E. Mikrobiologische Methoden: Eine Einführung in Grundlegende Arbeitstechniken 2nd ed. Spektrum Heidelberg, Germany 2010
Brandis-Heep A. Kothe E. Zimmermann T. Methoden der Mikrobiologie: Ein Praxishandbuch Springer Berlin/Heidelberg, Germany 2020 10.1007/978-3-662-60822-7
Widdel F. Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov Arch. Microbiol. 1981 129 395 400 10.1007/BF00406470
Cleland W.W. Dithiothreitol, a New Protective Reagent for SH Groups Biochemistry 1964 3 480 482 10.1021/bi00892a002 14192894
Brock T.D. Od’ea K. Amorphous ferrous sulfide as a reducing agent for culture of anaerobes Appl. Environ. Microbiol. 1977 33 254 256 10.1128/aem.33.2.254-256.1977 192144
Thauer R.K. Jungermann K. Decker K. Energy Conservation in Chemotrophic Anaerobic Bacteria Bacteriol. Rev. 1977 41 100 180 10.1128/br.41.1.100-180.1977
Zehnder A.J.B. Wuhrmann K. Titanium (III) Citrate as a Nontoxic Oxidation-Reduction Buffering System for the Culture of Obligate Anaerobes Science 1976 194 1165 1166 10.1126/science.793008 793008
Jones G.A. Pickard M.D. Effect of titanium (III) citrate as reducing agent on growth of rumen bacteria Appl. Environ. Microbiol. 1980 39 1144 1147 10.1128/aem.39.6.1144-1147.1980
Bryant M. Robinson I. An Improved Nonselective Culture Medium for Ruminal Bacteria and Its Use in Determining Diurnal Variation in Numbers of Bacteria in the Rumen J. Dairy Sci. 1961 44 1446 1456 10.3168/jds.S0022-0302(61)89906-2
Smith P.H. Hungate R.E. Isolation and characterization of Methanobacterium ruminantium n. sp. J. Bacteriol. 1958 75 713 718 10.1128/jb.75.6.713-718.1958
Schönheit P. Moll J. Thauer R.K. Growth parameters (Ks, max, Ys) of Methanobacterium thermoautotrophicum Arch. Microbiol. 1980 127 59 65 10.1007/BF00414356
Schönheit P. Moll J. Thauer R.K. Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum Arch. Microbiol. 1979 123 105 107 10.1007/BF00403508
Rothe O. Thomm M. A simplified method for the cultivation of extreme anaerobic Archaea based on the use of sodium sulfite as reducing agent Extremophiles 2000 4 247 252 10.1007/PL00010716
Davoodi A. Pakshir M. Babaiee M. Ebrahimi G.R. A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media Corros. Sci. 2011 53 399 408 10.1016/j.corsci.2010.09.050
Jacob H.E. Chapter IV Redox Potential Methods in Microbiology Elsevier Amsterdam, The Netherlands 1970 Volume 2 91 123 10.1016/S0580-9517(08)70218-6
German Collection of Microorganisms and Cell Cultures Cultivation of Anaerobes DSMZ Braunschweig, Germany 2011
Taubner R.S. Rittmann S.K.M.R. Method for Indirect Quantification of CH4 Production via H2O Production Using Hydrogenotrophic Methanogens Front. Microbiol. 2016 7 532 10.3389/fmicb.2016.00532 27199898
Camacho F. Páez M.P. Jiménez M.C. Fernández M. Application of the sodium dithionite oxidation to measure oxygen transfer parameters Chem. Eng. Sci. 1997 52 1387 1391 10.1016/S0009-2509(96)00497-6
Telfeyan K. Migdisov A.A. Pandey S. Vesselinov V.V. Reimus P.W. Long-term stability of dithionite in alkaline anaerobic aqueous solution Appl. Geochem. 2019 101 160 169 10.1016/j.apgeochem.2018.12.015
Mauerhofer L.M. Pappenreiter P. Paulik C. Seifert A.H. Bernacchi S. Rittmann S.K.M.R. Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology Folia Microbiol. 2019 64 321 360 10.1007/s12223-018-0658-4 30446943
Kaster A.K. Goenrich M. Seedorf H. Liesegang H. Wollherr A. Gottschalk G. Thauer R.K. More Than 200 Genes Required for Methane Formation from H2 and CO2 and Energy Conservation Are Present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus Archaea 2011 2011 973848 10.1155/2011/973848