BILANCIONI, Massimo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Freitas, Nahuel
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A chemical reaction network implementation of a Maxwell demon
L. Brillouin, “ Maxwell’s demon cannot operate: Information and entropy. I,” J. Appl. Phys. 22, 334- 337 ( 1951). 10.1063/1.1699951
R. Landauer, “ Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183- 191 ( 1961). 10.1147/rd.53.0183
R. Landauer, “ Information is physical,” Phys. Today 44( 5), 23- 29 ( 1991). 10.1063/1.881299
C. H. Bennett, “ The thermodynamics of computation—A review,” Int. J. Theor. Phys. 21, 905- 940 ( 1982). 10.1007/bf02084158
T. Sagawa and M. Ueda, “ Minimal energy cost for thermodynamic information processing: Measurement and information erasure,” Phys. Rev. Lett. 102, 250602 ( 2009). 10.1103/physrevlett.102.250602
F. J. Cao and M. Feito, “ Thermodynamics of feedback controlled systems,” Phys. Rev. E 79, 041118 ( 2009). 10.1103/physreve.79.041118
T. Sagawa and M. Ueda, “ Nonequilibrium thermodynamics of feedback control,” Phys. Rev. E 85, 021104 ( 2012). 10.1103/physreve.85.021104
M. Esposito and G. Schaller, “ Stochastic thermodynamics for ‘Maxwell demon’ feedbacks,” Europhys. Lett. 99, 30003 ( 2012). 10.1209/0295-5075/99/30003
A. C. Barato and U. Seifert, “ Unifying three perspectives on information processing in stochastic thermodynamics,” Phys. Rev. Lett. 112, 090601 ( 2014). 10.1103/physrevlett.112.090601
V. Serreli, C.-F. Lee, E. R. Kay, and D. A. Leigh, “ A molecular information ratchet,” Nature 445, 523- 527 ( 2007). 10.1038/nature05452
M. Alvarez-Pérez, S. M. Goldup, D. A. Leigh, and A. M. Z. Slawin, “ A chemically-driven molecular information ratchet,” J. Am. Chem. Soc. 130, 1836- 1838 ( 2008). 10.1021/ja7102394
A. Carlone, S. M. Goldup, N. Lebrasseur, D. A. Leigh, and A. Wilson, “ A three-compartment chemically-driven molecular information ratchet,” J. Am. Chem. Soc. 134, 8321- 8323 ( 2012). 10.1021/ja302711z
S. Amano, M. Esposito, E. Kreidt, D. A. Leigh, E. Penocchio, and B. M. W. Roberts, “ Insights from an information thermodynamics analysis of a synthetic molecular motor,” Nat. Chem. 14, 530- 537 ( 2022). 10.1038/s41557-022-00899-z
S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano, “ Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality,” Nat. Phys. 6, 988- 992 ( 2010). 10.1038/nphys1821
T. K. Saha, J. N. E. Lucero, J. Ehrich, D. A. Sivak, and J. Bechhoefer, “ Maximizing power and velocity of an information engine,” Proc. Natl. Acad. Sci. U. S. A. 118, e2023356118 ( 2021). 10.1073/pnas.2023356118
S. Travis Bannerman, G. N. Price, K. Viering, and M. G. Raizen, “ Single-photon cooling at the limit of trap dynamics: Maxwell’s demon near maximum efficiency,” New J. Phys. 11, 063044 ( 2009). 10.1088/1367-2630/11/6/063044
A. Kumar, T.-Y. Wu, F. Giraldo, and D. S. Weiss, “ Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon,” Nature 561, 83- 87 ( 2018). 10.1038/s41586-018-0458-7
J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin, “ Experimental realization of a Szilard engine with a single electron,” Proc. Natl. Acad. Sci. U. S. A. 111, 13786- 13789 ( 2014). 10.1073/pnas.1406966111
J. V. Koski, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissila, and J. P. Pekola, “ On-chip Maxwell’s demon as an information-powered refrigerator,” Phys. Rev. Lett. 115, 260602 ( 2015). 10.1103/physrevlett.115.260602
P. A. Camati, J. P. Peterson, T. B. Batalhão, K. Micadei, A. M. Souza, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “ Experimental rectification of entropy production by Maxwell’s demon in a quantum system,” Phys. Rev. Lett. 117, 240502 ( 2016). 10.1103/physrevlett.117.240502
M. D. Vidrighin, O. Dahlsten, M. Barbieri, M. S. Kim, V. Vedral, and I. A. Walmsley, “ Photonic Maxwell’s demon,” Phys. Rev. Lett. 116, 050401 ( 2016). 10.1103/physrevlett.116.050401
N. Cottet S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q. Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, and B. Huard, “ Observing a quantum Maxwell demon at work,” Proc. Natl. Acad. Sci. U. S. A. 114, 7561- 7564 ( 2017). 10.1073/pnas.1704827114
Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y. Tabuchi, R. Yamazaki, M. Ueda, and Y. Nakamura, “ Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system,” Nat. Commun. 9, 1291 ( 2018). 10.1038/s41467-018-03686-y
M. Naghiloo, J. J. Alonso, A. Romito, E. Lutz, and K. W. Murch, “ Information gain and loss for a quantum Maxwell’s demon,” Phys. Rev. Lett. 121, 030604 ( 2018). 10.1103/physrevlett.121.030604
M. Ribezzi-Crivellari and F. Ritort, “ Large work extraction and the Landauer limit in a continuous Maxwell demon,” Nat. Phys. 15, 660 ( 2019). 10.1038/s41567-019-0481-0
B.-L. Najera-Santos, P. A. Camati, V. Métillon, M. Brune, J.-M. Raimond, A. Auffèves, and I. Dotsenko, “ Autonomous Maxwell’s demon in a cavity qed system,” Phys. Rev. Res. 2, 032025 ( 2020). 10.1103/physrevresearch.2.032025
N. Freitas and M. Esposito, “ Maxwell demon that can work at macroscopic scales,” Phys. Rev. Lett. 129, 120602 ( 2022). 10.1103/physrevlett.129.120602
N. Freitas and M. Esposito, “ Information flows in macroscopic Maxwell’s demons,” Phys. Rev. E 107, 014136 ( 2023). 10.1103/physreve.107.014136
S. Flatt, D. M. Busiello, S. Zamuner, and P. De Los Rios, “ ABC transporters are billion-year-old Maxwell demons,” Commun. Phys. 6, 205 ( 2023). 10.1038/s42005-023-01320-y
E. Penocchio, F. Avanzini, and M. Esposito, “ Information thermodynamics for deterministic chemical reaction networks,” J. Chem. Phys. 157, 034110 ( 2022). 10.1063/5.0094849
U. Seifert, “ Stochastic thermodynamics, fluctuation theorems and molecular machines,” Rep. Prog. Phys. 75, 126001 ( 2012). 10.1088/0034-4885/75/12/126001
T. Schmiedl and U. Seifert, “ Stochastic thermodynamics of chemical reaction networks,” J. Chem. Phys. 126, 044101 ( 2007). 10.1063/1.2428297
R. Rao and M. Esposito, “ Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics,” Phys. Rev. X 6, 041064 ( 2016). 10.1103/physrevx.6.041064
J. M. Horowitz and M. Esposito, “ Thermodynamics with continuous information flow,” Phys. Rev. X 4, 031015 ( 2014). 10.1103/physrevx.4.031015
D. Hartich, A. C. Barato, and U. Seifert, “ Stochastic thermodynamics of bipartite systems: Transfer entropy inequalities and a Maxwell’s demon interpretation,” J. Stat. Mech.: Theory Exp. 2014, P02016. 10.1088/1742-5468/2014/02/p02016
R. Rao and M. Esposito, “ Conservation laws and work fluctuation relations in chemical reaction networks,” J. Chem. Phys. 149, 245101 ( 2018). 10.1063/1.5042253
R. A. Alberty, Thermodynamics of Biochemical Reactions ( Wiley-Interscience, New York, 2003).
F. Avanzini, N. Freitas, and M. Esposito, “ Circuit theory for chemical reaction networks,” Phys. Rev. X 13, 021041 ( 2023). 10.1103/physrevx.13.021041
L. A. Segel, Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems ( Wiley-Interscience, New York, 1989).
C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer Series in Synergetics ( Springer, Berlin, Heidelberg, 2009).
J. A. Owen, T. R. Gingrich, and J. M. Horowitz, “ Universal thermodynamic bounds on nonequilibrium response with biochemical applications,” Phys. Rev. X 10, 011066 ( 2020). 10.1103/physrevx.10.011066
B. Somanathan Nair, Digital Electronics and Logic Design ( PHI Learning Pvt. Ltd., 2002), p. 240.