BILANCIONI, Massimo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
PENOCCHIO, Emanuele ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Massimiliano ESPOSITO
External co-authors :
no
Language :
English
Title :
A [3]-catenane non-autonomous molecular motor model: Geometric phase, no-pumping theorem, and energy transduction
K. Sekimoto, Stochastic Energetics (Springer, 2010), Vol. 799.
C. Van den Broeck and M. Esposito, "Ensemble and trajectory thermodynamics: A brief introduction," Physica A 418, 6-16 (2015). 10.1016/j.physa.2014.04.035
C. Jarzynski, "Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale," Annu. Rev. Condens. Matter Phys. 2, 329-351 (2011). 10.1146/annurev-conmatphys-062910-140506
U. Seifert, "Stochastic thermodynamics, fluctuation theorems and molecular machines," Rep. Prog. Phys. 75, 126001 (2012). 10.1088/0034-4885/75/12/126001
R. Rao and M. Esposito, "Conservation laws shape dissipation," New J. Phys. 20, 023007 (2018). 10.1088/1367-2630/aaa15f
L. Peliti and S. Pigolotti, Stochastic Thermodynamics: An Introduction (Princeton University Press, Princeton, 2021).
I. A. Martínez, É. Roldán, L. Dinis, and R. A. Rica, "Colloidal heat engines: A review," Soft Matter 13, 22-36 (2017). 10.1039/c6sm00923a
S. Ciliberto, "Experiments in stochastic thermodynamics: Short history and perspectives," Phys. Rev. X 7, 021051 (2017). 10.1103/physrevx.7.021051
T. K. Saha, J. N. E. Lucero, J. Ehrich, D. A. Sivak, and J. Bechhoefer, "Maximizing power and velocity of an information engine," Proc. Natl. Acad. Sci. U. S. A. 118, e2023356118 (2021). 10.1073/pnas.2023356118
C. Y. Mou, J. Luo, and G. Nicolis, "Stochastic thermodynamics of nonequilibrium steady states in chemical reaction systems," J. Chem. Phys. 84, 7011-7017 (1986). 10.1063/1.450623
H. Qian and D. A. Beard, "Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium," Biophys. Chem. 114, 213-220 (2005). 10.1016/j.bpc.2004.12.001
T. Schmiedl and U. Seifert, "Stochastic thermodynamics of chemical reaction networks," J. Chem. Phys. 126, 044101 (2007). 10.1063/1.2428297
R. Rao and M. Esposito, "Conservation laws and work fluctuation relations in chemical reaction networks," J. Chem. Phys. 149, 245101 (2018). 10.1063/1.5042253
D. H. Wolpert and A. Kolchinsky, "Thermodynamics of computing with circuits," New J. Phys. 22, 063047 (2020). 10.1088/1367-2630/ab82b8
N. Freitas, J.-C. Delvenne, and M. Esposito, "Stochastic and quantum thermodynamics of driven RLC networks," Phys. Rev. X 10, 031005 (2020). 10.1103/physrevx.10.031005
N. Freitas, J.-C. Delvenne, and M. Esposito, "Stochastic thermodynamics of nonlinear electronic circuits: A realistic framework for computing around kT," Phys. Rev. X 11, 031064 (2021). 10.1103/physrevx.11.031064
D. Andrieux and P. Gaspard, "Fluctuation theorems and the nonequilibrium thermodynamics of molecular motors," Phys. Rev. E 74, 011906 (2006). 10.1103/PhysRevE.74.011906
J. M. Horowitz, T. Sagawa, and J. M. R. Parrondo, "Imitating chemical motors with optimal information motors," Phys. Rev. Lett. 111, 010602 (2013). 10.1103/PhysRevLett.111.010602
P. Pietzonka, A. C. Barato, and U. Seifert, "Universal bound on the efficiency of molecular motors," J. Stat. Mech.: Theory Exp. 2016, 124004. 10.1088/1742-5468/2016/12/124004
A. I. Brown and D. A. Sivak, "Theory of nonequilibrium free energy transduction by molecular machines," Chem. Rev. 120, 434-459 (2020). 10.1021/acs.chemrev.9b00254
M. P. Leighton and D. A. Sivak, "Dynamic and thermodynamic bounds for collective motor-driven transport," Phys. Rev. Lett. 129, 118102 (2022). 10.1103/physrevlett.129.118102
S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, and A. L. Nussbaumer, "Artificial molecular machines," Chem. Rev. 115, 10081-10206 (2015). 10.1021/acs.chemrev.5b00146
Y. Qiu, Y. Feng, Q.-H. Guo, R. Dean Astumian, and J. Fraser Stoddart, "Pumps through the ages," Chem 6, 1952-1977 (2020). 10.1016/j.chempr.2020.07.009
S. Borsley, E. Kreidt, D. A. Leigh, and B. M. W. Roberts, "Autonomous fuelled directional rotation about a covalent single bond," Nature 604, 80-85 (2022). 10.1038/s41586-022-04450-5
L. Zhang, Y. Qiu, W.-G. Liu, H. Chen, D. Shen, B. Song, K. Cai, H. Wu, Y. Jiao, Y. Feng, J. S. W. Seale, C. Pezzato, J. Tian, Y. Tan, X.-Y. Chen, Q.-H. Guo, C. L. Stern, D. Philp, R. Dean Astumian, W. A. Goddard, and J. Fraser Stoddart, "An electric molecular motor," Nature 613, 280-286 (2023). 10.1038/s41586-022-05421-6
S. Amano, M. Esposito, E. Kreidt, D. A. Leigh, E. Penocchio, and B. M. W. Roberts, "Insights from an information thermodynamics analysis of a synthetic molecular motor," Nat. Chem. 14, 530-537 (2022). 10.1038/s41557-022-00899-z
S. Corrà, M. T. Bakić, J. Groppi, M. Baroncini, S. Silvi, E. Penocchio, M. Esposito, and A. Credi, "Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump," Nat. Nanotechnol. 17, 746-751 (2022). 10.1038/s41565-022-01151-y
E. Penocchio, F. Avanzini, and M. Esposito, "Information thermodynamics for deterministic chemical reaction networks," J. Chem. Phys. 157, 034110 (2022). 10.1063/5.0094849
E. R. Kay, D. A. Leigh, and F. Zerbetto, "Synthetic molecular motors and mechanical machines," Angew. Chem., Int. Ed. 46, 72-191 (2007). 10.1002/anie.200504313
V. Balzani, A. Credi, and M. Venturi, Molecular Devices and Machines (Wiley-VCH, 2008).
C. Pezzato, C. Cheng, J. Fraser Stoddart, and R. Dean Astumian, "Mastering the non-equilibrium assembly and operation of molecular machines," Chem. Soc. Rev. 46, 5491-5507 (2017). 10.1039/c7cs00068e
S. Amano, M. Esposito, E. Kreidt, D. A. Leigh, E. Penocchio, and B. M. W. Roberts, "Using catalysis to drive chemistry away from equilibrium: Relating kinetic asymmetry, power strokes, and the Curtin-Hammett principle in Brownian ratchets," J. Am. Chem. Soc. 144, 20153-20164 (2022). 10.1021/jacs.2c08723
R. Dean Astumian, "Design principles for Brownian molecular machines: How to swim in molasses and walk in a hurricane," Phys. Chem. Chem. Phys. 9, 5067-5083 (2007). 10.1039/b708995c
R. Dean Astumian, "Adiabatic operation of a molecular machine," Proc. Natl. Acad. Sci. U. S. A. 104, 19715-19718 (2007). 10.1073/pnas.0708040104
R. Dean Astumian, "Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet," Nat. Commun. 10, 3837 (2019). 10.1038/s41467-019-11402-7
A. Albaugh and T. R. Gingrich, "Simulating a chemically fueled molecular motor with nonequilibrium molecular dynamics," Nat. Commun. 13, 2204 (2022). 10.1038/s41467-022-29393-3
D. Asnicar, E. Penocchio, and D. Frezzato, "Sample size dependence of tagged molecule dynamics in steady-state networks with bimolecular reactions: Cycle times of a light-driven pump," J. Chem. Phys. 156, 184116 (2022). 10.1063/5.0089695
E. Penocchio and G. Ragazzon, "Kinetic barrier diagrams to visualize and engineer molecular nonequilibrium systems," Small 19, 2206188 (2023). 10.1002/smll.202206188
C. Pezzato, M. T. Nguyen, D. J. Kim, O. Anamimoghadam, L. Mosca, and J. Fraser Stoddart, "Controlling dual molecular pumps electrochemically," Angew. Chem., Int. Ed. 57, 9325-9329 (2018). 10.1002/anie.201803848
A.-K. Pumm, W. Engelen, E. Kopperger, J. Isensee, M. Vogt, V. Kozina, M. Kube, M. N. Honemann, E. Bertosin, M. Langecker, R. Golestanian, F. C. Simmel, and H. Dietz, "A DNA origami rotary ratchet motor," Nature 607, 492-498 (2022). 10.1038/s41586-022-04910-y
D. A. Leigh, J. K. Y. Wong, F. Dehez, and F. Zerbetto, "Unidirectional rotation in a mechanically interlocked molecular rotor," Nature 424, 174-179 (2003). 10.1038/nature01758
M. Baroncini, S. Silvi, and A. Credi, "Photo-and redox-driven artificial molecular motors," Chem. Rev. 120, 200-268 (2020). 10.1021/acs.chemrev.9b00291
J. V. Hernández, E. R. Kay, and D. A. Leigh, "A reversible synthetic rotary molecular motor," Science 306, 1532-1537 (2004). 10.1126/science.1103949
S. P. Fletcher, F. Dumur, M. M. Pollard, and B. L. Feringa, "A reversible, unidirectional molecular rotary motor driven by chemical energy," Science 310, 80-82 (2005). 10.1126/science.1117090
Y. Lin, B. J. Dahl, and B. P. Branchaud, "Net directed 180° aryl-aryl bond rotation in a prototypical achiral biaryl lactone synthetic molecular motor," Tetrahedron Lett. 46, 8359-8362 (2005). 10.1016/j.tetlet.2005.09.151
D. A. Leigh, U. Lewandowska, B. Lewandowski, and M. R. Wilson, "Synthetic molecular walkers," Top. Curr. Chem. 354, 111-138 (2014). 10.1007/128_2014_546
S. Erbas-Cakmak, S. D. P. Fielden, U. Karaca, D. A. Leigh, C. T. McTernan, D. J. Tetlow, and M. R. Wilson, "Rotary and linear molecular motors driven by pulses of a chemical fuel," Science 358, 340-343 (2017). 10.1126/science.aao1377
B. S. L. Collins, J. C. M. Kistemaker, E. Otten, and B. L. Feringa, "A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle," Nat. Chem. 8, 860-866 (2016). 10.1038/nchem.2543
Y. Zhang, Z. Chang, H. Zhao, S. Crespi, B. L. Feringa, and D. Zhao, "A chemically driven rotary molecular motor based on reversible lactone formation with perfect unidirectionality," Chem 6, 2420-2429 (2020). 10.1016/j.chempr.2020.07.025
K. Mo, Y. Zhang, Z. Dong, Y. Yang, X. Ma, B. L. Feringa, and D. Zhao, "Intrinsically unidirectional chemically fuelled rotary molecular motors," Nature, 609, 293-298 (2022). 10.1038/s41586-022-05033-0
M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, "An adiabatic quantum electron pump," Science 283, 1905-1908 (1999). 10.1126/science.283.5409.1905
R. Dean Astumian, "Adiabatic pumping mechanism for ion motive ATPases," Phys. Rev. Lett. 91, 118102 (2003). 10.1103/physrevlett.91.118102
J. M. R. Parrondo, "Reversible ratchets as Brownian particles in an adiabatically changing periodic potential," Phys. Rev. E 57, 7297-7300 (1998). 10.1103/physreve.57.7297
N. A. Sinitsyn and I. Nemenman, "The Berry phase and the pump flux in stochastic chemical kinetics," Europhys. Lett. 77, 58001 (2007). 10.1209/0295-5075/77/58001
N. A. Sinitsyn, "The stochastic pump effect and geometric phases in dissipative and stochastic systems," J. Phys. A: Math. Theor. 42, 193001 (2009). 10.1088/1751-8113/42/19/193001
J. M. R. Parrondo, J. M. Blanco, F. J. Cao, and R. Brito, "Efficiency of Brownian motors," Europhys. Lett. 43, 248 (1998). 10.1209/epl/i1998-00348-5
I. M. Sokolov, "A perturbation approach to transport in discrete ratchet systems," J. Phys. A: Math. Gen. 32, 2541-2550 (1999). 10.1088/0305-4470/32/13/006
R. Dean Astumian, "Stochastic conformational pumping: A mechanism for free-energy transduction by molecules," Annu. Rev. Biophys. 40, 289-313 (2011). 10.1146/annurev-biophys-042910-155355
D. Forastiere, R. Rao, and M. Esposito, "Linear stochastic thermodynamics," New J. Phys. 24, 083021 (2022). 10.1088/1367-2630/ac836b
S. Rahav, J. Horowitz, and C. Jarzynski, "Directed flow in nonadiabatic stochastic pumps," Phys. Rev. Lett. 101, 140602 (2008). 10.1103/physrevlett.101.140602
O. Raz, Y. Subaş l, and C. Jarzynski, "Mimicking nonequilibrium steady states with time-periodic driving," Phys. Rev. X 6, 021022 (2016). 10.1103/physrevx.6.021022
G. M. Rotskoff, "Mapping current fluctuations of stochastic pumps to nonequilibrium steady states," Phys. Rev. E 95, 030101 (2017). 10.1103/PhysRevE.95.030101
A. C. Barato and R. Chetrite, "Current fluctuations in periodically driven systems," J. Stat. Mech.: Theory Exp. 2018, 053207. 10.1088/1742-5468/aabfc5
S. Rahav, "Extracting work from stochastic pumps," J. Stat. Mech.: Theory Exp. 2011, P09020. 10.1088/1742-5468/2011/09/p09020
E. Lathouwers, J. N. E. Lucero, and D. Sivak, "Nonequilibrium energy transduction in stochastic strongly coupled rotary motors," J. Phys. Chem. Lett. 11, 5273-5278 (2020).
S. Asban and S. Rahav, "No-pumping theorem for many particle stochastic pumps," Phys. Rev. Lett. 112, 050601 (2014). 10.1103/PhysRevLett.112.050601
An analogous mapping is possible in catenanes with N rings and N + M stations. In that case, the equivalent system would have M rings and same number of stations.
M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. London, Ser. A 392, 45-57 (1984). 10.1098/rspa.1984.0023
Wolfram Research, Inc., Mathematica, Version 12.3.1, Champaign, IL, 2021.
M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck, "Efficiency at maximum power of low-dissipation Carnot engines," Phys. Rev. Lett. 105, 150603 (2010). 10.1103/physrevlett.105.150603
E. Penocchio, R. Rao, and M. Esposito, "Thermodynamic efficiency in dissipative chemistry," Nat. Commun. 10, 3865 (2019). 10.1038/s41467-019-11676-x
I. Bogod and S. Rahav, "Singular optimal driving cycles of stochastic pumps," Phys. Rev. Res. 4, 023204 (2022). 10.1103/physrevresearch.4.023204