Article (Périodiques scientifiques)
Toward Understanding Efficient Privacy-Preserving Homomorphic Comparison
Pulido-Gaytan, Bernardo; Tchernykh, Andrei; LEPREVOST, Franck et al.
2023In IEEE Access, 11, p. 102189 - 102206
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Toward_Understanding_Efficient_Privacy-Preserving_Homomorphic_Comparison.pdf
Postprint Auteur (2.69 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Cloud security; encrypted number comparison; homomorphic encryption; polynomial approximation; privacy-preserving; Approximation methods; Cloud securities; Cloud-computing; Encrypted number comparison; Ho-momorphic encryptions; Homomorphic-encryptions; Privacy preserving; Public keys; Computer Science (all); Materials Science (all); Engineering (all); General Engineering; General Materials Science; General Computer Science; Electrical and Electronic Engineering
Résumé :
[en] The security issues that arise in public cloud environments raise several concerns about privacy-preserving. Conventional security practices successfully protect stored and transmitted data by encryption, but not during data processing where the data value extraction requires decryption. It creates critical exposure points for sensitive sectors like healthcare, pharmaceutical, genomics, government, and financial, among many others that cause hesitation to use these third-party services and prevent widespread practical adoption of cloud solutions. Homomorphic Encryption (HE) emerges as a mechanism for expanding the scope of public cloud services for sensitive data processing. However, high-demand solutions such as artificial intelligence and machine learning require efficient operations beyond HE additions and multiplications. In this paper, we analyze the current homomorphic comparison methods across their strengths and weaknesses and present theoretical concepts, state-of-the-art techniques, challenges, opportunities, and open problems. We theoretically prove the limits of the representability of sign and comparison functions in polynomial forms for HE schemes. We show that both functions can be represented as polynomials over the Galois field and cannot be represented over a residue ring with zero divisors. We compare the efficiency, accuracy, and computational complexity of different homomorphic comparison approaches. The experimental results demonstrate that Newton-Raphson is the fastest method for generating polynomial approximations and evaluating comparisons, and the Fourier method is the most accurate considering the L1, L2, L∞ norms and R2 measure. The bi-objective analysis presents the performance compromise between complexity and accuracy.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Pulido-Gaytan, Bernardo ;  CICESE Research Center, Department of Computer Science, Ensenada, Mexico
Tchernykh, Andrei ;  CICESE Research Center, Department of Computer Science, Ensenada, Mexico
LEPREVOST, Franck  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
BOUVRY, Pascal  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Goldman, Alfredo ;  Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Toward Understanding Efficient Privacy-Preserving Homomorphic Comparison
Date de publication/diffusion :
2023
Titre du périodique :
IEEE Access
ISSN :
2169-3536
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
Volume/Tome :
11
Pagination :
102189 - 102206
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 30 décembre 2023

Statistiques


Nombre de vues
125 (dont 2 Unilu)
Nombre de téléchargements
49 (dont 0 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
2
citations OpenAlex
 
5
citations WoS
 
4

Bibliographie


Publications similaires



Contacter ORBilu