Coherent anti Stokes Raman scattering; Exciton resonances; Excitonic resonance; Excitonics; Nonresonant; Orders of magnitude; Phonon resonance; Raman scattering intensity; Resonant effect; Single-walled carbon; Electronic, Optical and Magnetic Materials; Energy (all); Physical and Theoretical Chemistry; Surfaces, Coatings and Films; Physics - Mesoscopic Systems and Quantum Hall Effect; Physics - Materials Science; General Energy
Abstract :
[en] In this work, we investigate the role of exciton resonances in coherent anti-Stokes Raman scattering (er-CARS) in single-walled carbon nanotubes (SWCNTs). We drive the nanotube system in simultaneous phonon and excitonic resonances, and we observe a superior enhancement by orders of magnitude exceeding nonresonant cases. We investigated the resonant effects in several (n, m) chiralities and found that the er-CARS intensity varies more than 4 orders of magnitude between nanotube species determined by excitonic resonant condition. The experimental finding is compared to a perturbation theory model. Finally, we show that such giant resonant nonlinear signals enable rapid mapping and local heating of individualized CNTs, suggesting easy tracking of CNTs for future nanotoxicology studies and therapeutic applications in biological tissues.
Disciplines :
Physics
Author, co-author :
GORDEEV, Georgy ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil ; Department of Physics, Freie Universität Berlin, Berlin, Germany
Lafeta, Lucas ; Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil ; Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
Flavel, Benjamin S. ; Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
Jorio, Ado ; Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
Malard, Leandro M. ; Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
External co-authors :
yes
Language :
English
Title :
Excitonic Resonances in Coherent Anti-Stokes Raman Scattering from Single-Walled Carbon Nanotubes
Publication date :
19 October 2023
Journal title :
Journal of Physical Chemistry. C, Nanomaterials and interfaces
Fundação de Amparo à Pesquisa do Estado de Minas Gerais Deutsche Forschungsgemeinschaft Conselho Nacional de Desenvolvimento Científico e Tecnológico Instituto de Ciência e Tecnologia de Nanomateriais de Carbono Financiadora de Estudos e Projetos Alexander von Humboldt-Stiftung Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Funding text :
G.G. gratefully acknowledges the German Research Foundation (DFG via SFB 658, subproject A6), Dahlem Research School (FU bright fellowship), and Focus Area NanoScale of Freie Universitaet Berlin. L.L. gratefully acknowledges the Alexander von Humboldt Foundation for its financial support. B.F. acknowledges DFG Grants FL 834/5-1, FL 834/7-1, FL 834/9-1, and FL 834/12-1. L.L., A.J., and L.M.M. primarily received financial support from CNPq, CAPES, FAPEMIG (APQ 01321-14), FINEP, Brazilian Institute of Science and Technology (INCT) in Carbon Nanomaterials and Rede Mineira de Materiais 2D (FAPEMIG). L.M.M. also acknowledges the CAPES and Humboldt fellowship. All authors are thankful for the fruitful discussions with Prof. Riichiro Saito and Prof. Stephanie Reich and acknowledge help with language corrections provided by Oisín Garrity.
Prince, R. C.; Frontiera, R. R.; Potma, E. O. Stimulated Raman Scattering: From Bulk to Nano. Chem. Rev. 2017, 117, 5070- 5094, 10.1021/acs.chemrev.6b00545
Malard, L. M.; Lafeta, L.; Cunha, R. S.; Nadas, R.; Gadelha, A.; Cançado, L. G.; Jorio, A. Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS. Phys. Chem. Chem. Phys. 2021, 23, 23428- 23444, 10.1039/D1CP03240B
Li, Y.; Shen, B.; Li, S.; Zhao, Y.; Qu, J.; Liu, L. Review of Stimulated Raman Scattering Microscopy Techniques and Applications in the Biosciences. Advanced Biology 2021, 5, 2000184, 10.1002/adbi.202000184
Huth, K.; Glaeske, M.; Achazi, K.; Gordeev, G.; Kumar, S.; Arenal, R.; Sharma, S. K.; Adeli, M.; Setaro, A.; Reich, S.; Haag, R. Fluorescent Polymer-Single-Walled Carbon Nanotube Complexes with Charged and Noncharged Dendronized Perylene Bisimides for Bioimaging Studies. Small 2018, 14, 1800796, 10.1002/smll.201800796
Kostarelos, K.; Bianco, A.; Prato, M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol. 2009, 4, 627- 633, 10.1038/nnano.2009.241
Porter, A. E.; Gass, M.; Muller, K.; Skepper, J. N.; Midgley, P. A.; Welland, M. Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2007, 2, 713- 717, 10.1038/nnano.2007.347
Wang, F.; Dukovic, G.; Brus, L. E.; Heinz, T. F. The Optical Resonances in Carbon nanotubes arise from excitons. Science 2005, 308, 838- 841, 10.1126/science.1110265
Goodhead, R. M.; Moger, J.; Galloway, T. S.; Tyler, C. R. Tracing engineered nanomaterials in biological tissues using coherent anti-Stokes Raman scattering (CARS) microscopy - A critical review. Nanotoxicology 2015, 9, 928- 939, 10.3109/17435390.2014.991773
Hudson, B.; Hetherington, W.; Cramer, S.; Chabay, I.; Klauminzer, G. K. Resonance enhanced coherent anti-Stokes Raman scattering. Proccedings of the National Academy of Sciences 1976, 73, 3798- 38, 10.1073/pnas.73.11.3798
Wei, L.; Min, W. Electronic Preresonance Stimulated Raman Scattering Microscopy. J. Phys. Chem. Lett. 2018, 9, 4294- 4301, 10.1021/acs.jpclett.8b00204
Lafetá, L.; Cadore, A. R.; Mendes-De-Sa, T. G.; Watanabe, K.; Taniguchi, T.; Campos, L. C.; Jorio, A.; Malard, L. M. Anomalous Nonlinear Optical Response of Graphene Near Phonon Resonances. Nano Lett. 2017, 17, 3447- 3451, 10.1021/acs.nanolett.7b00329
Virga, A.; Ferrante, C.; Batignani, G.; De Fazio, D.; Nunn, A. D. G.; Ferrari, A. C.; Cerullo, G.; Scopigno, T. Coherent anti-Stokes Raman spectroscopy of single and multi-layer graphene. Nat. Commun. 2019, 10, 3658, 10.1038/s41467-019-11165-1
Lüer, L.; Gadermaier, C.; Crochet, J.; Hertel, T.; Brida, D.; Lanzani, G. Coherent Phonon Dynamics in Semiconducting Carbon Nanotubes: A Quantitative Study of Electron-Phonon Coupling. Phys. Rev. Lett. 2009, 102, 127401, 10.1103/PhysRevLett.102.127401
Doorn, S. K.; Araujo, P. T.; Hata, K.; Jorio, A. Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy. Phys. Rev. B 2008, 78, 165408, 10.1103/PhysRevB.78.165408
Jiang, J.; Saito, R.; Sato, K.; Park, J. S.; Samsonidze, G. G.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Exciton-photon, exciton-phonon matrix elements, and resonant Raman intensity of single-wall carbon nanotubes. Phys. Rev. B 2007, 75, 035405, 10.1103/PhysRevB.75.035405
Maruyama, S.; Xiang, R.; Etchegoin, P. G.; Le Ru, E. C.; Bohn, J. E.; Chiashi, S. Estimating the Raman Cross Sections of Single Carbon Nanotubes. ACS Nano 2010, 4, 3466- 3470, 10.1021/nn100425k
Tschannen, C. D.; Gordeev, G.; Reich, S.; Shi, L.; Pichler, T.; Frimmer, M.; Novotny, L.; Heeg, S. Raman Scattering Cross Section of Confined Carbyne. Nano Lett. 2020, 20, 6750- 6755, 10.1021/acs.nanolett.0c02632
Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; Unlu, M. S.; Goldberg, B. B.; Pimenta, M. A.; Hafner, J. H.; Lieber, C. M.; Saito, R. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B 2002, 65, 1554121- 1554129, 10.1103/PhysRevB.65.155412
Cronin, S. B.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 2005, 72, 35425, 10.1103/PhysRevB.72.035425
Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235- 1238, 10.1021/nl034428i
Paddubskaya, A.; Dementjev, A.; Devižis, A.; Karpicz, R.; Maksimenko, S.; Valušis, G. Coherent anti-Stokes Raman scattering as an effective tool for visualization of single-wall carbon nanotubes. Opt. Express 2018, 26, 10527- 10534, 10.1364/OE.26.010527
Duarte, A. S.; Rehbinder, J.; Correia, R. R. B.; Buckup, T.; Motzkus, M. Mapping impurity of single-walled carbon nanotubes in bulk samples with multiplex coherent anti-Stokes Raman microscopy. Nano Lett. 2013, 13, 697- 702, 10.1021/nl304371x
Sheps, T.; Brocious, J.; Corso, B. L.; Gül, O. T.; Whitmore, D.; Durkaya, G.; Potma, E. O.; Collins, P. G. Four-wave mixing microscopy with electronic contrast of individual carbon nanotubes. Phys. Rev. B 2012, 86, 235412, 10.1103/PhysRevB.86.235412
Kim, H.; Sheps, T.; Collins, P. G.; Potma, E. O. Nonlinear optical imaging of individual carbon nanotubes with four-wave-mixing microscopy. Nano Lett. 2009, 9, 2991, 10.1021/nl901412x
Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309, 10.1038/ncomms1313
Flavel, B. S.; Moore, K. E.; Pfohl, M.; Kappes, M. M.; Hennrich, F. Separation of single-walled carbon nanotubes with a gel permeation chromatography system. ACS Nano 2014, 8, 1817- 1826, 10.1021/nn4062116
Flavel, B. S.; Kappes, M. M.; Krupke, R.; Hennrich, F. Separation of single-walled carbon nanotubes by 1-dodecanol-mediated size-exclusion chromatography. ACS Nano 2013, 7, 3557- 3564, 10.1021/nn4004956
Duque, J. G.; Chen, H.; Swan, A. K.; Shreve, A. P.; Kilina, S.; Tretiak, S.; Tu, X.; Zheng, M.; Doorn, S. K. Violation of the condon approximation in semiconducting carbon nanotubes. ACS Nano 2011, 5, 5233- 5241, 10.1021/nn201430z
Gordeev, G.; Jorio, A.; Kusch, P.; Vieira, B. G.; Flavel, B.; Krupke, R.; Barros, E. B.; Reich, S. Resonant anti-Stokes Raman scattering in single-walled carbon nanotubes. Phys. Rev. B 2017, 96, 245415, 10.1103/PhysRevB.96.245415
Hudson, B.; Hetherington, W.; Cramer, S.; Chabay, I.; Klauminzer, G. K. Resonance enhanced coherent anti-Stokes Raman scattering. Proc. Natl. Acad. Sci. U. S. A. 1976, 73, 3798- 3802, 10.1073/pnas.73.11.3798
Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford Series in Optical and Imaging Sciences; Oxford University Press: 1999; pp 45- 49, 279- 283.
Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors - Physics and Materials Properties; Springer: Berlin, 1995; pp 18- 83.
Thomsen, C.; Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 2000, 85, 5214- 5217, 10.1103/PhysRevLett.85.5214
Gordeev, G. Elementary Exciton Mediated Raman Scattering Mechanisms in Pristine and Functionalized Single Walled Carbon Nanotubes. Ph.D. Thesis, Freie Universitaet Berlin, 2019.
Ferrante, C.; Virga, A.; Benfatto, L.; Martinati, M.; Fazio, D. D.; Sassi, U.; Fasolato, C.; Ott, A. K.; Postorino, P.; Yoon, D. Raman spectroscopy of graphene under ultrafast laser excitation. Nat. Commun. 2018, 9, 308, 10.1038/s41467-017-02508-x
Gordeev, G.; Flavel, B.; Krupke, R.; Kusch, P.; Reich, S. Asymmetry of resonance Raman profiles in semiconducting single-walled carbon nanotubes at the first excitonic transition. Phys. Rev. B 2019, 99, 45404, 10.1103/PhysRevB.99.045404
Ouyang, Y.; Fang, Y. Temperature dependence of the Raman spectra of carbon nanotubes with 1064 nm excitation. Physica E: Low-Dimensional Systems and Nanostructures 2004, 24, 222- 226, 10.1016/j.physe.2004.04.034
Golubewa, L.; Timoshchenko, I.; Romanov, O.; Karpicz, R.; Kulahava, T.; Rutkauskas, D.; Shuba, M.; Dementjev, A.; Svirko, Y.; Kuzhir, P. Single-walled carbon nanotubes as a photo-thermo-acoustic cancer theranostic agent: theory and proof of the concept experiment. Sci. Rep. 2020, 10, 22174, 10.1038/s41598-020-79238-6
Eskiizmir, G.; Ermertcan, A. T.; Yapici, K. Nanomaterials: Promising structures for the management of oral cancer. Nanostructures for Oral Medicine 2017, 511- 544, 10.1016/B978-0-323-47720-8.00018-3
Gordeev, G.; Setaro, A.; Glaeske, M.; Jürgensen, S.; Reich, S. Doping in covalently functionalized carbon nanotubes: A Raman scattering study. Physica Status Solidi (B) 2016, 253, 2461- 2467, 10.1002/pssb.201600636
Chen, Y. W.; Su, Y. L.; Hu, S. H.; Chen, S. Y. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Delivery Rev. 2016, 105, 190- 204, 10.1016/j.addr.2016.05.022