Condensed Matter Physics; General Materials Science; General Chemistry
Abstract :
[en] Liquid crystal-forming cyanobiphenyls are truly extraordinary molecules that have had an enormous impact on liquid crystal research and applications since they were first synthesised. This impact is, on the one hand, due to the exceptionally convenient physical properties of the main characters, 5CB and 8CB, allowing easy experiments at room temperature, as well as their commercial availability at reasonable cost. On the other hand, the cyanobiphenyl chemical structure leads to some quite peculiar characteristics in terms of organisation at the molecular scale, which are sometimes well recognised and even utilised, but often the awareness of these peculiarities is not strong. This perspective article reviews the use of cyanobiphenyls in making liquid crystal shells and liquid crystal core fibres, in sensing, as a medium for simultaneously aligning and dispersing carbon nanotubes, and as highly useful solvents for reactive mesogens that can be polymerised into anisotropic networks. This choice is very much motivated by how cyanobiphenyls have impacted our group’s research throughout the years, which is the basis for the examples I provide. Nevertheless, I believe they serve well to illustrate the immense usefulness of cyanobiphenyls in innovating research and applications related to liquid crystals.
[1] SluckinTJ, DunmurDA, StegemeyerH.Crystals that flow: classic papers from the history of liquid crystals. London: Taylor and Francis; 2004.
[2] DunmurDA, ToriyamaK.Light scattering and dielectric studies of molecular association in mesogenic solutions. Liq Cryst. 1986;1(2):169180. doi: 10.1080/02678298608086503
[3] WilsonMR, DunmurDA. Molecular mechanics modelling of structure/property relationships in liquid crystals. Liq Cryst. 1989;5(3):987999. doi: 10.1080/02678298908026403
[4] NohJ, WangY, LiangHL, et al. Dynamic tuning of the director field in liquid crystal shells using block copolymers. Phys Rev Res. 2020;2(3):033160. doi: 10.1103/PhysRevResearch.2.033160
[5] SharmaA, KizhakidathazhathR, LagerwallJ. Impact of mesogenic aromaticity and cyano termination on the alignment and stability of liquid crystal shells. Soft Matter. 2023Apr;19(14):26372645. doi: 10.1039/D3SM00041A
[6] BlancC, DureyG, KamienRD, et al. Helfrich-hurault elastic instabilities driven by geometrical frustration. Rev Mod Phys. 2023;95(1). doi: 10.1103/RevModPhys.95.015004
[7] AghaH, GengY, MaX, et al. Unclonable human-invisible machine vision markers leveraging the omnidirectional chiral Bragg diffraction of cholesteric spherical reflectors. Light Sci Appl. 2022;11(11):309. doi: 10.1038/s41377-022-01002-4
[8] SchwartzM, LenziniG, GengY, et al. Cholesteric liquid crystal shells as enabling material for information-rich design and architecture. Adv Mater. 2018May;30(30):1707382. doi: 10.1002/adma.201707382
[9] UrbanskiM, ReyesCG, NohJ, et al. Liquid crystals in micron-scale droplets, shells and fibers. J Phys. 2017;29(13):133003. doi: 10.1088/1361-648X/aa5706
[10] Lopez-LeonT, Fernandez-NievesA. Drops and shells of liquid crystal. Colloid Polym Sci. 2011;289(4):345359. doi: 10.1007/s00396-010-2367-7
[11] NelsonDR. Toward a tetravalent chemistry of colloids. Nano Lett. 2002;2(10):11251129. doi: 10.1021/nl0202096
[12] Fernandez-NievesA, VitelliV, UtadaA, et al. Novel defect structures in nematic liquid crystal shells. Phys Rev Lett. 2007;99(15):157801. doi: 10.1103/PhysRevLett.99.157801
[13] Lopez-LeonT, KoningV, DevaiahKBS, et al. Frustrated nematic order in spherical geometries. Nat Phys. 2011;7:391394. doi: 10.1038/nphys1920
[14] HeK, Campo-CortsF, GoralM, et al. Micron-sized double emulsions and nematic shells generated via tip streaming. Phys Rev Fluids. 2019;4(12):124201. doi: 10.1103/PhysRevFluids.4.124201
[15] LiangHL, EnzE, ScaliaG, et al. Liquid crystals in novel geometries prepared by microfluidics and electrospinning. Mol Cryst Liq Cryst. 2011;549:6977. doi: 10.1080/15421406.2011.581140
[16] LiangHL, SchymuraS, RudquistP, et al. Nematic-smectic transition under confinement in liquid crystalline colloidal shells. Phys Rev Lett. 2011;106(24):247801. doi: 10.1103/PhysRevLett.106.247801
[17] Lopez-LeonT, Fernandez-NievesA, NobiliM, et al. Nematic-smectic transition in spherical shells. Phys Rev Lett. 2011;106(24):247802. doi: 10.1103/PhysRevLett.106.247802
[18] LiangH, NohJ, ZentelR, et al. Tuning the defect configurations in nematic and smectic liquid crystalline shells. Philos Trans A. 2013Apr;371(1988):20120258. doi: 10.1098/rsta.2012.0258
[19] ThomsenDLIII, KellerP, NaciriJ, et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules. 2001;34(17):58685875. doi: 10.1021/ma001639q
[20] FleischmannEK, LiangHL, KapernaumN, et al. One-piece micropumps from liquid crystalline core-shell particles. Nat Commun. 2012;3(1):1178. doi: 10.1038/ncomms2193
[22] BrakeJ, AbbottN. An experimental system for imaging the reversible adsorption of amphiphiles at aqueous-liquid crystal interfaces. Langmuir. 2002;18(16):61016109. doi: 10.1021/la011746t
[25] GerberP. Measurement of the rotational viscosity of nematic liquid-crystals. Appl Phys A. 1981;26(3):139–142. doi: 10.1007/BF00614747
[26] LagerwallJPF, McCannJT, FormoE, et al. Coaxial electrospinning of microfibres with liquid crystal in the core. Chem Commun. 2008;42:54205422. doi: 10.1039/b810450f
[27] EnzE, LagerwallJ. Electrospun microfibres with temperature sensitive iridescence from encapsulated cholesteric liquid crystal. J Mater Chem. 2010;20(33):68666872. doi: 10.1039/c0jm01223h
[28] ScaliaG, EnzE, CalO, et al. Morphology and core continuity of liquid-crystal-functionalized, coaxially electrospun fiber mats tuned via the polymer sheath solution. Macromol Mater Eng. 2013;298(5):583589. doi: 10.1002/mame.201200361
[30] KimDK, HwangM, LagerwallJPF. Liquid crystal-functionalization of electrospun polymer fibers. J Polym Sci B. 2013;51(11):855867. doi: 10.1002/polb.23285
[31] ReyesCG, SharmaA, LagerwallJP. Non-electronic gas sensors from electrospun mats of liquid crystal core fibers for detecting volatile organic compounds at room temperature. Liq Cryst. 2016;43(1315):19862001. doi: 10.1080/02678292.2016.1212287
[32] ReyesCG, LagerwallJP. Advancing flexible volatile compound sensors using liquid crystals encapsulated in polymer fibers. In: ChienL-C, editor. Emerging liquid crystal technologies XIII. Vol. 10555. International Society for Optics and Photonics: 2018. p. 1055500.
[33] WangJ, JkliA, WestJL. Liquid crystal/polymer fiber mats as sensitive chemical sensors. J Mol Liq. 2018;267:490495. doi: 10.1016/j.molliq.2018.01.051
[34] ReyesC, LagerwallJ. Disruption of electrospinning due to water condensation into the Taylor cone. ACS Appl Mater Interfaces. 2020Jun;12(23):2656626576. doi: 10.1021/acsami.0c03338
[35] ReyesC, BallerJ, ArakiT, et al. Isotropic-isotropic phase separation and spinodal decomposition in liquid crystal-solvent mixtures. Soft Matter. 2019Jun;15(30):60446054. doi: 10.1039/C9SM00921C
[36] VatsS, AnyfantakisM, HonakerL, et al. Stable electrospinning of core-functionalized coaxial fibers enabled by the minimum-energy interface given by partial core-sheath miscibility. Langmuir. 2021;37(45):13265–13277. doi: 10.1021/acs.langmuir.1c01824
[37] CarltonRJ, HunterJT, MillerDS, et al. Chemical and biological sensing using liquid crystals. Liq Cryst Rev. 2013;1(1):2951. doi: 10.1080/21680396.2013.769310
[38] BrakeJ, DaschnerM, LukY, et al. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science. 2003;302(5653):20942097. doi: 10.1126/science.1091749
[39] LukY, AbbottN, BerticsP, et al. Using liquid crystals and nanostructured surfaces to detect regulatory proteins involved in cell signaling pathways. Biochemistry. 2003;42(28):86388638.
[40] JangC, ChengL, OlsenC, et al. Anchoring of nematic liquid crystals on viruses with different envelope structures. Nano Lett. 2006;6(5):10531058. doi: 10.1021/nl060625g
[41] ParkJ, AbbottN. Ordering transitions in thermotropic liquid crystals induced by the interfacial assembly and enzymatic processing of oligopeptide amphiphiles. Adv Mater. 2008;20(6):1185. doi: 10.1002/adma.200702012
[42] SivakumarS, WarkK, GuptaJ, et al. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv Funct Mater. 2009;19(14):22602265. doi: 10.1002/adfm.200900399
[43] LinIH, MillerD, BerticsP, et al. Endotoxin-induced structural transformations in liquid crystalline droplets. Science. 2011;332(6035):12971300. doi: 10.1126/science.1195639
[44] JiangS, NohJ, ParkC, et al. Using machine learning and liquid crystal droplets to identify and quantify endotoxins from different bacterial species. Analyst. 2021Feb;146(4):12241233. doi: 10.1039/D0AN02220A
[45] KimY, WangX, MondkarP, et al. Self-reporting and self-regulating liquid crystals. Nature. 2018May;557(7706):539544. doi: 10.1038/s41586-018-0098-y
[46] ShahR, AbbottN. Using liquid crystals to image reactants and products of acid-base reactions on surfaces with micrometer resolution. J Am Chem Soc. 1999;121(49):1130011310. doi: 10.1021/ja9844837
[47] ShahR, AbbottN. Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals. Science. 2001;293(5533):12961299. doi: 10.1126/science.1062293
[48] MannaU, Zayas-GonzalezY, CarltonR, et al. Liquid crystal chemical sensors that cells can wear. Angew Chem Int Ed Engl. 2013Dec;52(52):140115. doi: 10.1002/anie.201306630
[49] YangKL, CadwellK, AbbottNL. Mechanistic study of the anchoring behavior of liquid crystals supported on metal salts and their orientational responses to dimethyl methylphosphonate. J Phys Chem B. 2004;108(52):2018020186. doi: 10.1021/jp0470391
[50] CadwellKD, LockwoodNA, NellisBA, et al. Detection of organophosphorous nerve agents using liquid crystals supported on chemically functionalized surfaces. Sens Actuat B. 2007;128(1):9198. doi: 10.1016/j.snb.2007.05.044
[51] HunterJT, PalSK, AbbottNL. Adsorbate-induced ordering transitions of nematic liquid crystals on surfaces decorated with aluminum perchlorate salts. ACS Appl Mater Interfaces. 2010;2(7):18571865. doi: 10.1021/am100165a
[52] HunterJ, AbbottN. Dynamics of the chemo-optical response of supported films of nematic liquid crystals. Sens Actuat B-Chem. 2013;183:7180. doi: 10.1016/j.snb.2013.03.094
[53] NiuX, ZhongY, ChenR, et al. Highly sensitive and selective liquid crystal optical sensor for detection of ammonia. Opt Express. 2017;25(12):13549–13556. doi: 10.1364/OE.25.013549
[54] KimH, JangC. Liquid crystal-based capillary sensory platform for the detection of bile acids. Chem Phys Lipids. 2017;204:10–14. doi: 10.1016/j.chemphyslip.2017.02.003
[55] KimHJ, JangCH. Micro-capillary sensor for imaging trypsin activity using confined nematic liquid crystals. J Mol Liq. 2016;222:596–600. doi: 10.1016/j.molliq.2016.07.099
[57] PatersonDA, DuX, BaoP, et al. Chiral nematic liquid crystal droplets as a basis for sensor systems. Mol Syst Des Eng. 2022;7:607–621. doi: 10.1039/D1ME00189B
[58] EstevesC, RamouE, PorteiraARP, et al. Seeing the unseen: the role of liquid crystals in gas sensing technologies. Adv Opt Mater. 2020;8(11):1902117. doi: 10.1002/adom.201902117
[59] BaoP, PatersonD, HarrisonP, et al. Lipid coated liquid crystal droplets for the on-chip detection of antimicrobial peptides. Lab Chip. 2019;19(6):1082–1089. doi: 10.1039/C8LC01291A
[60] PopovP, HonakerLW, KooijmanEE, et al. A liquid crystal biosensor for specific detection of antigens. Sens Bio-Sens Res. 2016;8:31–35. doi: 10.1016/j.sbsr.2016.03.008
[61] PopovN, HonakerLW, PopovaM, et al. Thermotropic liquid crystal-assisted chemical and biological sensors. Materials. 2017;11(1):20. doi: 10.3390/ma11010020
[62] HussainA, SemeanoA, PalmaS, et al. Tunable gas sensing gels by cooperative assembly. Adv Funct Mater. 2017;27(27):27. doi: 10.1002/adfm.201700803
[63] JangJH, ParkSY. ph-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics. Sens Actuat B. 2017;241:636–643. doi: 10.1016/j.snb.2016.10.118
[64] PatrickNS, RichardRH, DanielSK. Liquid crystal reorientation induced by aptamer conformational changes. J Am Chem Soc. 2013;135(13):5183–5189. doi: 10.1021/ja400619k
[65] AlinoVJ, SimPH, ChoyWT, et al. Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots. Langmuir. 2012;28(50):17571–17577. doi: 10.1021/la303213h
[66] AaronMC, PatrickNS, DanielSK. Surfactant-DNA interactions at the liquid crystal-aqueous interface. Soft Matter. 2012;8(16):4335–4342. doi: 10.1039/c2sm07483d
[67] StephanieMM, DanielSK. Macroscopic liquid crystal response to isolated DNA helices. Langmuir. 2011;27(19):11767–11772. doi: 10.1021/la202640a
[68] AlinoVJ, PangJ, YangKL. Liquid crystal droplets as a hosting and sensing platform for developing immunoassays. Langmuir. 2011;27(19):11784–11789. doi: 10.1021/la2022215
[69] AndrewPD, Ignes-MullolJ, VallveMA, et al. Liquid crystal anchoring transformations induced by phase transitions of a photoisomerizable surfactant at the nematic/aqueous interface. Soft Matter. 2009;5(11):2252–2260. doi: 10.1039/b821980j
[70] PriceA, SchwartzD. DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface. J Am Chem Soc. 2008;130(26):8188–8194. doi: 10.1021/ja0774055
[72] DierkingI, ScaliaG, MoralesP, et al. Aligning and reorienting carbon nanotubes with nematic liquid crystals. Adv Mater. 2004;16(11):865–869. doi: 10.1002/adma.200306196
[73] YakemsevaM, DierkingI, KapernaumN, et al. Dispersions of multi-wall carbon nanotubes in ferroelectric liquid crystals. Eur Phys J E. 2014;37(2). doi: 10.1140/epje/i2014-14007-4
[74] SchymuraS, ScaliaG. On the effect of carbon nanotubes on properties of liquid crystals. Philos Trans A. 2013;371(1988):20120261. doi: 10.1098/rsta.2012.0261
[75] ScaliaG. Alignment of carbon nanotubes in thermotropic and lyotropic liquid crystals. Chemphyschem. 2010;11(2):333–340. doi: 10.1002/cphc.200900747
[77] ScaliaG, LagerwallJPF, SchymuraS, et al. Carbon nanotubes in liquid crystals as versatile functional materials. Phys Stat Sol (B). 2007;244(11):4212–4217. doi: 10.1002/pssb.200776205
[79] ScaliaG, HaluskaM, Dettlaff-WeglikowskaU, et al. Polarized Raman spectroscopy study of swcnt orientational order in an aligning liquid crystalline matrix. AIP Conf Proc. 2005;786:114–117.
[80] PetrovP, TerentjevEM. Formation of cellular solid in liquid crystal colloids. Langmuir. 2001;17(10):2942–2949. doi: 10.1021/la0016470
[81] MeekerSP, PoonWCK, CrainJ, et al. Colloid-liquid-crystal composites: an unusual soft solid. Phys Rev E. 2000;61(6):R6083–R6086. doi: 10.1103/PhysRevE.61.R6083
[82] ScaliaG, LagerwallJPF, HaluskaM, et al. Effect of phenyl rings in liquid crystal molecules on swcnts studied by Raman spectroscopy. Phys Stat Sol (B). 2006;243(13):3238–3241. doi: 10.1002/pssb.200669205
[83] SchymuraS, KühnastM, LutzV, et al. Towards efficient dispersion of carbon nanotubes in thermotropic liquid crystals. Adv Funct Mater. 2010;20(19):3350–3357. doi: 10.1002/adfm.201000539
[84] LagerwallJPF, DabrowskiR, ScaliaG. Antiferroelectric liquid crystals with induced intermediate polar phases and the effects of doping with carbon nanotubes. J Non-Cryst Solids. 2007;353(47–51):4411–4417. doi: 10.1016/j.jnoncrysol.2007.01.094
[85] LagerwallJPF, GiesselmannF. Current topics in smectic liquid crystal research. Chemphyschem. 2006;7(1):20–45. doi: 10.1002/cphc.200500472
[86] LagerwallJPF, HeppkeG, GiesselmannF. Frustration between syn- and anticlinicity in mixtures of chiral and non-chiral tilted smectic-c-type liquid crystals. Eur Phys J E. 2005;18(1):113–121. doi: 10.1140/epje/i2005-10035-5
[87] SuryaprakashN. Liquid crystals as solvents in NMR spectroscopy: current developments in structure determination. Curr Org Chem. 2000;4(1):85–103. doi: 10.2174/1385272003376373
[88] YakackiCM, SaedM, NairDP, et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction. RSC Adv. 2015;5(25):18997–19001. doi: 10.1039/C5RA01039J
[90] AβhoffS, LanciaF, IamsaardS, et al. High-power actuation from molecular photoswitches in enantiomerically paired soft springs. Angew Chem Int Ed. 2017;56(12):3261–3265. doi: 10.1002/anie.201611325
[91] IamsaardS, AβhoffS, MattB, et al. Conversion of light into macroscopic helical motion. Nat Chem. 2014;6(3):229–235. doi: 10.1038/nchem.1859
[92] KimSU, LeeYJ, LiuJ, et al. Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers. Nat Mater. 2022;21(1):41–46. doi: 10.1038/s41563-021-01075-3
[93] MistryD, MorganPB, ClampJH, et al. New insights into the nature of semi-soft elasticity and “mechanical-fréedericksz transitions” in liquid crystal elastomers. Soft Matter. 2018;14(8):1301–1310. doi: 10.1039/C7SM02107K
[94] MistryD, ConnellSD, MickthwaiteS, et al. Coincident molecular auxeticity and negative order parameter in a liquid crystal elastomer. Nat Commun. 2018;9(1):5095. doi: 10.1038/s41467-018-07587-y
[95] GelebartAH, LiuD, MulderDJ, et al. Photoresponsive sponge-like coating for on-demand liquid release. Adv Funct Mater. 2018;28(10):1705942. doi: 10.1002/adfm.201705942
[96] ZhanY, ZhouG, LamersB, et al. Artificial organic skin wets its surface by field-induced liquid secretion. Matter. 2020;3(3):782–793. doi: 10.1016/j.matt.2020.05.015