Article (Scientific journals)
Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control
Lopes, Marcelle G.M.; Recktenwald, Steffen M.; Simionato, Greta et al.
2023In Transfusion Medicine and Hemotherapy: Offizielles Organ der Deutschen Gesellschaft für Transfusionsmedizin und Immunhamatologie, 50 (3), p. 163–173
Peer Reviewed verified by ORBi
 

Files


Full Text
2023_BigData_Transfusion.pdf
Publisher postprint (1.45 MB) Creative Commons License - Attribution, Non-Commercial, No Derivative
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Abstract :
[en] Background: ``Artificial intelligence'' and ``big data'' increasingly take the step from just being interesting concepts to being relevant or even part of our lives. This general statement holds also true for transfusion medicine. Besides all advancements in transfusion medicine, there is not yet an established red blood cell quality measure, which is generally applied. Summary: We highlight the usefulness of big data in transfusion medicine. Furthermore, we emphasize in the example of quality control of red blood cell units the application of artificial intelligence. Key Messages: A variety of concepts making use of big data and artificial intelligence are readily available but still await to be implemented into any clinical routine. For the quality control of red blood cell units, clinical validation is still required.
Disciplines :
Physics
Author, co-author :
Lopes, Marcelle G.M.
Recktenwald, Steffen M.
Simionato, Greta
Eichler, Hermann
WAGNER, Christian  ;  University of Luxembourg
Quint, Stephan
Kaestner, Lars
External co-authors :
yes
Language :
English
Title :
Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control
Publication date :
June 2023
Journal title :
Transfusion Medicine and Hemotherapy: Offizielles Organ der Deutschen Gesellschaft für Transfusionsmedizin und Immunhamatologie
ISSN :
1660-3796
eISSN :
1660-3818
Volume :
50
Issue :
3
Pages :
163–173
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBilu :
since 23 December 2023

Statistics


Number of views
93 (1 by Unilu)
Number of downloads
62 (0 by Unilu)

Scopus citations®
 
29
Scopus citations®
without self-citations
22
OpenCitations
 
2
OpenAlex citations
 
33

Bibliography


Similar publications



Contact ORBilu