Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control
Lopes, Marcelle G.M.; Recktenwald, Steffen M.; Simionato, Gretaet al.
2023 • In Transfusion Medicine and Hemotherapy: Offizielles Organ der Deutschen Gesellschaft für Transfusionsmedizin und Immunhamatologie, 50 (3), p. 163–173
[en] Background: ``Artificial intelligence'' and ``big data'' increasingly take the step from just being interesting concepts to being relevant or even part of our lives. This general statement holds also true for transfusion medicine. Besides all advancements in transfusion medicine, there is not yet an established red blood cell quality measure, which is generally applied. Summary: We highlight the usefulness of big data in transfusion medicine. Furthermore, we emphasize in the example of quality control of red blood cell units the application of artificial intelligence. Key Messages: A variety of concepts making use of big data and artificial intelligence are readily available but still await to be implemented into any clinical routine. For the quality control of red blood cell units, clinical validation is still required.
Landsteiner K. [Agglutination phenomena of normal human blood]. Wien Klin Wochenschr. 1901;113(20-21):768–9.
Bruun-Rasmussen P, Kragh Andersen P, Banasik K, Brunak S, Johansson PI. Intervening on the storage time of RBC units and its effects on adverse recipient outcomes using real-world data. Blood. 2022; 139(25):3647–54.
Bruun-Rasmussen P, Andersen PK, Banasik K, Brunak S, Johansson PI. Estimating the effect of donor sex on red blood cell transfused patient mortality: a retrospective cohort study using a targeted learning and emulated trials-based approach. Eclinicalmedicine. 2022;51:101628.
Pendry K. The use of big data in transfusion medicine. Transfus Med. 2015;25(3): 129–37.
Reisman M. EHRs: the challenge of making electronic data useable and interoperable. P T. 2017;42(9):572–5.
Murphy GF. Electronic health records: changing the vision. Philadelphia: W. B. Saunders Company; 1999.
Janett RS, Yeracaris PP. Electronic medical records in the American health system: challenges and lessons learned. Cien Saude Colet. 2020;25(4):1293–304.
Roehrs A, da Costa CA, Righi RD, de Oliveira KSF. Personal health records: a systematic literature review. J Med Internet Res. 2017;19(1):e13.
Henricks WH. Laboratory information systems. Surg Pathol Clin. 2015;8(2):101–8.
Majchrowski B. Medical software’s increasing impact on healthcare and technology management. Biomed Instrum Technol. 2010;44(1):70–4.
Vuk T, Politis C, Laspina S, Lozano M, Haddad A, de Angelis V, et al. Thirty years of hemovigilance: achievements and future perspectives. Transfus Clin Biol. 2023;30(1):166–72.
Ning S, Li N, Barty R, Arnold D, Heddle NM. Database-driven research and big data analytic approaches in transfusion medicine. Transfusion. 2022;62(7):1427–34.
Hourfar MK, Jork C, Schottstedt V, Weber-Schehl M, Brixner V, Busch MP, et al. Experience of German Red Cross blood donor services with nucleic acid testing: results of screening more than 30 million blood donations for human immunodeficiency virus-1, hepatitis C virus, and hepatitis B virus. Transfusion. 2008;48(8):1558–66.
WHO. Blood safety and availability. [cited 2022 Dec 7]. Available from: https://www.who.int/news-room/fact-sheets/detail/bloodsafety-and-availability.
Starr D. Blood: an epic history of medicine and commerce. New York: Knopf Doubleday Publishing Group; 1998.
D’Alessandro A, Kriebardis AG, Rinalducci S, Antonelou MH, Hansen KC, Papassideri IS, et al. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion. 2015;55(1):205–19.
D’Alessandro A, D’Amici GM, Vaglio S, Zolla L. Time-course investigation of SAGM-stored leukocyte-filtered red bood cell concentrates: from metabolism to proteomics. Haematologica. 2012;97(1):107–15.
Mykhailova O, Olafson C, Turner TR, DAlessandro A, Acker JP. Donor-dependent aging of young and old red blood cell sub-populations: metabolic and functional heterogeneity. Transfusion. 2020;60(11):2633–46.
Eichler H, Feyer AK, Weitmann K, Hoffmann W, Henseler O, Opitz A, et al. Population-based analysis of the impact of demographics on the current and future blood supply in the saarland. Transfus Med Hemoth. 2021;48(3):175–82.
Nieto-Calvache AJ, Quintero-Santacruz M, Macia-Mejía C, López-Girón MC, Vergara-Galliadi LM, Ariza F. Dangerous shortage of blood banks as an indirect effect of SARSCoV-2: an obstetrics perspective. Int J Gynaecol Obstet. 2020;151(3):424–30.
Barnes LS, Stanley J, Bloch EM, Pagano MB, Ipe TS, Eichbaum Q, et al. Status of hospital-based blood transfusion services in low-income and middle-income countries: a cross-sectional international survey. Bmj Open. 2022;12(2):e055017.
Recktenwald SM, Lopes MGM, Peter S, Hof S, Simionato G, Peikert K, et al. Erysense, a lab-on-a-chip-based point-of-care device to evaluate red blood cell flow properties with multiple clinical applications. Front Physiol. 2022;13:884690.
Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Futur Healthc J. 2019;6(2):94–8.
Smit Sibinga CT. Artificial intelligence in transfusion medicine and its impact on the quality concept. Transfus Apher Sci. 2020; 59(6):103021.
De Mauro A, Greco M, Grimaldi M. A formal definition of big data based on its essential features. Libr Rev. 2016;65(3):122–35.
D Laney. 3D data management: controlling data volume, velocity, and variety. Stamford: META Group Inc.; 2001.
Dash S, Shakyawar SK, Sharma M, Kaushik S. Big data in healthcare: management, analysis and future prospects. J Big Data. 2019;6(1):54.
Kleinman S, Busch MP, Murphy EL, Shan H, Ness P, Glynn SA, et al. The national heart, lung, and blood institute recipient epidemiology and donor evaluation study (REDS-III): a research program striving to improve blood donor and transfusion recipient outcomes. Transfusion. 2014;54(3 Pt 2):942–55.
Edgren G, Hjalgrim H, Tran TN, Rostgaard K, Shanwell A, Titlestad K, et al. A population-based binational register for monitoring long-term outcome and possible disease concordance among blood donors and recipients. Vox Sang. 2006;91(4):316–23.
Edgren G, Rostgaard K, Vasan SK, Wikman A, Norda R, Pedersen OB, et al. The new Scandinavian Donations and Transfusions database (SCANDAT2): a blood safety resource with added versatility. Transfusion. 2015;55(7):1600–6.
Lanteri MC, Kanias T, Keating S, Stone M, Guo Y, Page GP, et al. Intradonor reproducibility and changes in hemolytic variables during red blood cell storage: results of recall phase of the REDS-III RBC-Omics study. Transfusion. 2019;59(1):79–88.
D’Alessandro A, Culp-Hill R, Reisz JA, Anderson M, Fu X, Nemkov T, et al. Heterogeneity of blood processing and storage additives in different centers impacts stored red blood cell metabolism as much as storage time: lessons from REDS-III: omics. Transfusion. 2019;59(1):89–100.
Stone M, Keating SM, Kanias T, Lanteri MC, Lebedeva M, Sinchar D, et al. Piloting and implementation of quality assessment and quality control procedures in RBC-Omics: a large multi-center study of red blood cell hemolysis during storage. Transfusion. 2019;59(1):57–66.
Di Angelantonio E, Thompson SG, Kaptoge S, Moore C, Walker M, Armitage J, et al. Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45 000 donors. Lancet. 2017;390(10110):2360–71.
Borkent-Raven BA, Janssen MP, van der Poel CL, Schaasberg WP, Bonsel GJ, van Hout BA. The PROTON study: profiles of blood product transfusion recipients in The Netherlands. Vox Sang. 2010;99(1):54–64.
Heddle NM, Cook RJ, Liu Y, Zeller M, Barty R, Acker JP, et al. The association between blood donor sex and age and transfusion recipient mortality: an exploratory analysis. Transfusion. 2019;59(2):482–91.
Holzmann MJ, Sartipy U, Olsson ML, Dick-man P, Edgren G. Sex-discordant blood transfusions and survival after cardiac surgery: a nationwide cohort study. Circulation. 2016;134(21):1692–4.
Roubinian NH, Escobar GJ, Liu V, Swain BE, Gardner MN, Kipnis P, et al. Trends in red blood cell transfusion and 30-day mortality among hospitalized patients. Transfusion. 2014;54(10 Pt 2):2678–86.
Kaserer A, Rössler J, Braun J, Farokhzad F, Pape HC, Dutkowski P, et al. Impact of a Patient Blood Management monitoring and feedback programme on allogeneic blood transfusions and related costs. Anaesthesia. 2019;74(12):1534–41.
Frank SM, Rothschild JA, Masear CG, Rivers RJ, Merritt WT, Savage WJ, et al. Optimizing preoperative blood ordering with data acquired from an anesthesia information management system. Anesthesiology. 2013;118(6):1286–97.
Association for the Advancement of Blood and Biotherapies. Standards for blood banks and blood transfusion services. 33rd ed. Bethesda: Association for the Advancement of Blood and Biotherapies; 2022.
Kaestner L, Juzeniene A, Moan J. Erythrocytes-the “house elves” of photodynamic therapy. Photochem Photobiol Sci. 2004;3(11–12):981–9.
Flatt JF, Bawazir WM, Bruce LJ. The involvement of cation leaks in the storage lesion of red blood cells. Front Physiol. 2014;5:214.
Melzak KA, Spouge JL, Boecker C, Kirschhöfer F, Brenner-Weiss G, Bieback K. Hemolysis pathways during storage of erythrocytes and inter-donor variability in erythrocyte morphology. Transfus Med Hemoth. 2021;48(1):39–47.
Aung HH, Tung JP, Dean MM, Flower RL, Pecheniuk NM. Procoagulant role of micro-particles in routine storage of packed red blood cells: potential risk for prothrombotic post-transfusion complications. Pathology. 2017;49(1):62–9.
Barshtein G, Manny N, Yedgar S. Circulatory risk in the transfusion of red blood cells with impaired flow properties induced by storage. Transfus Med Rev. 2011 Jan;25(1):24–35.
Barshtein G, Pries AR, Goldschmidt N, Zukerman A, Orbach A, Zelig O, et al. Deformability of transfused red blood cells is a potent determinant of transfusion-induced change in recipient’s blood flow. Microcirculation. 2016;23(7):479–86.
Barshtein G, Goldschmidt N, Pries AR, Zelig O, Arbell D, Yedgar S. Deformability of transfused red blood cells is a potent effector of transfusion-induced hemoglobin increment: a study with β-thalassemia major patients. Am J Hematol. 2017;92(9):E559–60.
Kaestner L, Scholz A, Tian Q, Ruppenthal S, Tabellion W, Wiesen K, et al. Genetically encoded Ca2+ indicators in cardiac myocytes. Circ Res. 2014 May;114(10):1623–39.
Thomas SL, Egee S, Lapaix F, Kaestner L, Staines HM, Ellory JC. Malaria parasite Plasmodium gallinaceum up-regulates host red blood cell channels. FEBS Lett. 2001 Jun;500(1–2):45–51.
Teles J, Enver T, Pina C. Single-cell PCR profiling of gene expression in hematopoiesis. Methods Mol Biol. 2014;1185:21–42.
Kaestner L, Bianchi P. Trends in the development of diagnostic tools for red blood cell-related diseases and anemias. Front Physiol. 2020;11:387.
Hertz L, Flormann D, Birnbaumer L, Wagner C, Laschke MW, Kaestner L. Evidence of in vivo exogen protein uptake by red blood cells: a putative therapeutic concept. Blood Adv. 2023;7(6):1033–9.
Rotordam MG, Fermo E, Becker N, Barcellini W, Brüggemann A, Fertig N, et al. A novel gain-of-function mutation of Piezo1 is functionally affirmed in red blood cells by high-throughput patch clamp. Haematologica. 2019;104(5):e179–83.
Hertz L, Huisjes R, Llaudet-Planas E, Petkova-Kirova P, Makhro A, Danielczok JG, et al. Is increased intracellular calcium in red blood cells a common component in the molecular mechanism causing anemia? Front Physiol. 2017;8:673.
Bessis M. Corpuscles, atlas of red blood cell shapes. Berlin: Springer; 1974.
Simionato G, Hinkelmann K, Chachanidze R, Bianchi P, Fermo E, van Wijk R, et al. Red blood cell phenotyping from 3D confocal images using artificial neural networks. Plos Comput Biol. 2021;17(5):e1008934.
Quint S, Christ AF, Guckenberger A, Himbert S, Kaestner L, Gekle S, et al. 3D tomography of cells in micro-channels. Appl Phys Lett. 2017 Sep;111(10):103701.
Simionato G, van Wijk R, Quint S, Wagner C, Bianchi P, Kaestner L. Rare anemias: are their names just smoke and mirrors? Front Physiol. 2021;12, 690604.
Bessis M, Delpech G. Sickle cell shape and structure: images and concepts (1840-1980). Blood Cell. 1982;8(2):359–435.
Darras A, Peikert K, Rabe A, Yaya F, Simionato G, John T, et al. Acanthocyte sedimentation rate as a diagnostic biomarker for neuroacanthocytosis syndromes: experimental evidence and physical justificationfication. Cells. 2021;10(4):788.
Henkelman S, Dijkstra-Tiekstra MJ, de Wildt-Eggen J, Graaff R, Rakhorst G, van Oeveren W. Is red blood cell rheology preserved during routine blood bank storage? Transfusion. 2010;50(4):941–8.
Frank SM, Abazyan B, Ono M, Hogue CW, Cohen DB, Berkowitz DE, et al. Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration. Anesth Analg. 2013;116(5):975–81.
Bennett-Guerrero E, Veldman TH, Doctor A, Telen MJ, Ortel TL, Reid TS, et al. Evolution of adverse changes in stored RBCs. Proc Natl Acad Sci. 2007;104(43):17063–8.
Piety NZ, Stutz J, Yilmaz N, Xia H, Yoshida T, Shevkoplyas SS. Microfluidic capillary networks are more sensitive than ektacytometry to the decline of red blood cell deformability induced by storage. Sci Rep. 2021;11(1):604.
Tomaiuolo G. Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics. 2014;8(5):051501.
Matthews K, Lamoureux ES, Myrand-Lapierre ME, Duffy SP, Ma H. Technologies for measuring red blood cell deformability. Lab Chip. 2022;22(7):1254–74.
Steffen P, Jung A, Nguyen DB, Müller T, Bernhardt I, Kaestner L, et al. Stimulation of human red blood cells leads to Ca2+mediated intercellular adhesion. Cell Calcium. 2011 May;50(1):54–61.
Kaestner L, Steffen P, Nguyen DB, Wang J, Wagner-Britz L, Jung A, et al. Lysophosphatidic acid induced red blood cell aggregation in vitro. Bioelectrochemistry. 2012;87:89–95.
Danielczok JG, Terriac E, Hertz L, Petkova-Kirova P, Lautenschläger F, Laschke MW, et al. Red blood cell passage of small capillaries is associated with transient Ca2+-mediated adaptations. Front Physiol. 2017;8:979.
Rizzuto V, Mencattini A, Álvarez-González B, Di Giuseppe D, Martinelli E, Beneitez-Pastor D, et al. Combining microfluidics with machine learning algorithms for RBC classification in rare hereditary hemolytic anemia. Sci Rep. 2021;11(1):13553.
Myrand-Lapierre ME, Deng X, Ang RR, Matthews K, Santoso AT, Ma H. Multiplexed fluidic plunger mechanism for the measurement of red blood cell deformability. Lab Chip. 2015;15(1):159–67.
Man Y, Kucukal E, An R, Watson QD, Bosch J, Zimmerman PA, et al. Microfluidic assessment of red blood cell mediated microvascular occlusion. Lab Chip. 2020;20(12):2086–99.
Islamzada E, Matthews K, Guo Q, Santoso AT, Duffy SP, Scott MD, et al. Deformability based sorting of stored red blood cells reveals donor-dependent aging curves. Lab Chip. 2020;20(2):226–35.
Burns JM, Yang X, Forouzan O, Sosa JM, Shevkoplyas SS. Artificial microvascular network: a new tool for measuring rheologic properties of stored red blood cells. Transfusion. 2012;52(5):1010–23.
Robidoux J, Laforce-Lavoie A, Charette SJ, Shevkoplyas SS, Yoshida T, Lewin A, et al. Development of a flow standard to enable highly reproducible measurements of deformability of stored red blood cells in a microfluidic device. Transfusion. 2020; 60(5):1032–41.
Matthews K, Myrand-Lapierre ME, Ang RR, Duffy SP, Scott MD, Ma H. Microfluidic deformability analysis of the red cell storage lesion. J Biomech. 2015; 48(15):4065–72.
Wang Y, You G, Chen P, Li J, Chen G, Wang B, et al. The mechanical properties of stored red blood cells measured by a convenient microfluidic approach combining with mathematic model. Biomicrofluidics. 2016; 10(2):024104.
Cluitmans JCA, Chokkalingam V, Janssen AM, Brock R, Huck WTS, Bosman GJ. Alterations in red blood cell deformability during storage: a microfluidic approach. BioMed Res Int. 2014;2014:764268.
Zheng Y, Chen J, Cui T, Shehata N, Wang C, Sun Y. Characterization of red blood cell deformability change during blood storage. Lab Chip. 2014;14(3):577–83.
Xu Z, Zheng Y, Wang X, Shehata N, Wang C, Sun Y. Stiffness increase of red blood cells during storage. Microsyst Nanoeng. 2018; 4(1):17103.
Kim E, Park S, Hwang S, Moon I, Javidi B. Deep learning-based phenotypic assessment of red cell storage lesions for safe transfusions. IEEE J Biomed Health Inform. 2021;95(3):1318–28.
Pinto RN, Sebastian JA, Parsons MJ, Chang TC, Turner TR, Acker JP, et al. Label-free analysis of red blood cell storage lesions using imaging flow cytometry. Cytometry. 2019;95(9):976–84.
Shouval R, Fein JA, Savani B, Mohty M, Nagler A. Machine learning and artificial intelligence in haematology. Br J Haematol. 2021;192(2):239–50.
Sebastian JA, Kolios MC, Acker JP. Emerging use of machine learning and advanced technologies to assess red cell quality. Transfus Apher Sci. 2020;59(6): 103020.
Lamoureux ES, Islamzada E, Wiens MVJ, Matthews K, Duffy SP, Ma H. Assessing red blood cell deformability from microscopy images using deep learning. Lab Chip. 2022; 22(1):26–39.
Routt AH, Yang N, Piety NZ, Lu M, Shevkoplyas SS. Deep ensemble learning enables highly accurate classification of stored red blood cell morphology. Sci Rep. 2023;13(1):3152.
Kihm A, Kaestner L, Wagner C, Quint S. Classification of red blood cell shapes in flow using outlier tolerant machine learning. Plos Comput Biol. 2018 Jun;14(6): e1006278.
Wang Y, Sang J, Ao R, Ma Y, Fu B. Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis. Comput Method Biomec. 2020;23(15):1190–200.
Doan M, Sebastian JA, Caicedo JC, Siegert S, Roch A, Turner TR, et al. Objective assessment of stored blood quality by deep learning. Proc Natl Acad Sci. 2020;117(35):21381–90.
Recktenwald SM, Graessel K, Maurer FM, John T, Gekle S, Wagner C. Red blood cell shape transitions and dynamics in time-dependent capillary flows. Biophys J. 2022; 121(1):23–36.
Recktenwald SM, Simionato G, Lopes MG, Gamboni F, Dzieciatkowska M, Meybohm P, et al. Cross-talk between red blood cells and plasma influences blood flow and omics phenotypes in severe COVID-19. Elife. 2022;11:e81316.
Lanotte L, Mauer J, Mendez S, Fedosov DA, Fromental JM, Claveria V, et al. Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Proc Natl Acad Sci U S A. 2016 Nov; 113(47):13289–94.
Guckenberger A, Kihm A, John T, Wagner C, Gekle S. Numerical–experimental observation of shape bistability of red blood cells flowing in a microchannel. Soft Matter. 2018;14(11):2032–43.
Mock DM, Nalbant D, Kyosseva SV, Schmidt RL, An G, Matthews NI, et al. Development, validation, and potential applications of biotinylated red blood cells for posttransfusion kinetics and other physiological studies: evidenced-based analysis and recommendations. Transfusion. 2018;58(8):2068–81.
Crew VK, Tilley LA, Satchwell TJ, AlSubhi SA, Jones B, Spring FA, et al. Missense mutations in PIEZO1, encoding the Piezo1 mechanosensor protein, define the Er red blood cell antigens. Blood. 2023;141(2): 135–46.
Bianchi P, Makhro A, Egee S, Kaestner L. Blood group meets ion channel: an unexpected marriage. Blood. 2023;141(2): online-only.
Smit Sibinga CT. Artificial intelligence and the future of transfusion medicine. Neurosci Chron. 2021;2(2).
Zhu S, Zhou L, Feng Y, Zhu J, Shu Q, Li H. Understanding the risk factors for adverse events during exchange transfusion in neonatal hyperbilirubinemia using explainable artificial intelligence. BMC Pediatr. 2022; 22(1):567.
Kaestner L. Artificial intelligence: training the trainer. Br J Haematol. 2022; 198(5):805–6.
Sibinga CTS. Digital Health. 2022:107–20.
Meier JM, Tschoellitsch T. Artificial intelligence and machine learning in patient blood management: a scoping review. Anesth Analg. 2022;135(3):524–31.