cell shape; density separation; diamide; erythrocyte; membrane rigidity; microcirculation; microfluidics; red blood cell senescence; red blood cells
Résumé :
[en] Blood flow in the microcirculatory system is crucially affected by intrinsic red blood cell (RBC) properties, such as their deformability. In the smallest vessels of this network, RBCs adapt their shapes to the flow conditions. Although it is known that the age of RBCs modifies their physical properties, such as increased cytosol viscosity and altered viscoelastic membrane properties, the evolution of their shape-adapting abilities during senescence remains unclear. In this study, we investigated the effect of RBC properties on the microcapillary in vitro flow behavior and their characteristic shapes in microfluidic channels. For this, we fractioned RBCs from healthy donors according to their age. Moreover, the membranes of fresh RBCs were chemically rigidified using diamide to study the effect of isolated graded-membrane rigidity. Our results show that a fraction of stable, asymmetric, off-centered slipper-like cells at high velocities decreases with increasing age or diamide concentration. However, while old cells form an enhanced number of stable symmetric croissants at the channel centerline, this shape class is suppressed for purely rigidified cells with diamide. Our study provides further knowledge about the distinct effects of age-related changes of intrinsic cell properties on the single-cell flow behavior of RBCs in confined flows due to inter-cellular age-related cell heterogeneity.
Mohandas N. Evans E. Mechanical Properties of the Red Cell Membrane in Relation to Molecular Structure and Genetic Defects Annu. Rev. Biophys. Biomol. Struct. 1994 23 787 818 10.1146/annurev.bb.23.060194.004035 7919799
Secomb T.W. Blood Flow in the Microcirculation Annu. Rev. Fluid Mech. 2017 49 443 461 10.1146/annurev-fluid-010816-060302
Skalak R. Branemark P.I. Deformation of Red Blood Cells in Capillaries Science 1969 164 717 719 10.1126/science.164.3880.717 5778020
Bagge U. Brånemark P. Karlsson R. Skalak R. Three-dimensional observations of red blood cell deformation in capillaries Blood Cells 1980 6 231 239
Suzuki Y. Tateishi N. Soutani M. Maeda N. Deformation of Erythrocytes in Microvessels and Glass Capillaries: Effects of Erythrocyte Deformability Microcirculation 1996 3 49 57 10.3109/10739689609146782
Freund J.B. The flow of red blood cells through a narrow spleen-like slit Phys. Fluids 2013 25 110807 10.1063/1.4819341
Salehyar S. Zhu Q. Deformation and internal stress in a red blood cell as it is driven through a slit by an incoming flow Soft Matter 2016 12 3156 3164 10.1039/C5SM02933C
Stuart J. Nash G. Red cell deformability and haematological disorders Blood Rev. 1990 4 141 147 10.1016/0268-960X(90)90041-P
Symeonidis A. Athanassiou G. Psiroyannis A. Kyriazopoulou V. Kapatais-Zoumbos K. Missirlis Y. Zoumbos N. Impairment of erythrocyte viscoelasticity is correlated with levels of glycosylated haemoglobin in diabetic patients Clin. Lab. Haematol. 2001 23 103 109 10.1046/j.1365-2257.2001.00366.x
Dondorp A. Nyanoti M. Kager P. Mithwani S. Vreeken J. Marsh K. The role of reduced red cell deformability in the pathogenesis of severe falciparum malaria and its restoration by blood transfusion Trans. R. Soc. Trop. Med. Hyg. 2002 96 282 286 10.1016/S0035-9203(02)90100-8
Mannino R. Myers D.R. Sakurai Y. Ware R.E. Barabino G. Lam W. Increased Erythrocyte Rigidity Is Sufficient to Cause Endothelial Dysfunction in Sickle Cell Disease Blood 2012 120 818 10.1182/blood.V120.21.818.818
Rabe A. Kihm A. Darras A. Peikert K. Simionato G. Dasanna A.K. Glaß H. Geisel J. Quint S. Danek A. et al. The Erythrocyte Sedimentation Rate and Its Relation to Cell Shape and Rigidity of Red Blood Cells from Chorea-Acanthocytosis Patients in an Off-Label Treatment with Dasatinib Biomolecules 2021 11 727 10.3390/biom11050727
Pries A.R. Secomb T.W. Blood Flow in Microvascular Networks Microcirculation Elsevier Amsterdam, The Netherlands 2008 3 36 10.1016/B978-0-12-374530-9.00001-2
Lanotte L. Mauer J. Mendez S. Fedosov D.A. Fromental J.M. Claveria V. Nicoud F. Gompper G. Abkarian M. Correction for Lanotte et al., Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions Proc. Natl. Acad. Sci. USA 2016 113 E8207 10.1073/pnas.1608074113
Gaehtgens P. Dührssen C. Albrecht K. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes Blood Cells 1980 6 799 817
Abkarian M. Faivre M. Stone H.A. High-speed microfluidic differential manometer for cellular-scale hydrodynamics Proc. Natl. Acad. Sci. USA 2006 103 538 542 10.1073/pnas.0507171102
Tomaiuolo G. Simeone M. Martinelli V. Rotoli B. Guido S. Red blood cell deformation in microconfined flow Soft Matter 2009 5 3736 10.1039/b904584h
Guido S. Tomaiuolo G. Microconfined flow behavior of red blood cells in vitro Comptes Rendus Phys. 2009 10 751 763 10.1016/j.crhy.2009.10.002
Braunmüller S. Schmid L. Sackmann E. Franke T. Hydrodynamic deformation reveals two coupled modes/time scales of red blood cell relaxation Soft Matter 2012 8 11240 11248 10.1039/c2sm26513c
Cluitmans J.C.A. Chokkalingam V. Janssen A.M. Brock R. Huck W.T.S. Bosman G.J.C.G.M. Alterations in Red Blood Cell Deformability during Storage: A Microfluidic Approach Biomed Res. Int. 2014 2014 764268 10.1155/2014/764268
Saadat A. Huyke D.A. Oyarzun D.I. Escobar P.V. vreeide I.H. Shaqfeh E.S.G. Santiago J.G. A system for the high-throughput measurement of the shear modulus distribution of human red blood cells Lab Chip 2020 20 2927 2936 10.1039/D0LC00283F
Kaoui B. Biros G. Misbah C. Why Do Red Blood Cells Have Asymmetric Shapes Even in a Symmetric Flow? Phys. Rev. Lett. 2009 103 188101 10.1103/PhysRevLett.103.188101 19905834
Fedosov D.A. Caswell B. Karniadakis G.E. A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics Biophys. J. 2010 98 2215 2225 10.1016/j.bpj.2010.02.002
Tahiri N. Biben T. Ez-Zahraouy H. Benyoussef A. Misbah C. On the problem of slipper shapes of red blood cells in the microvasculature Microvasc. Res. 2013 85 40 45 10.1016/j.mvr.2012.10.001 23063869
Fedosov D.A. Noguchi H. Gompper G. Multiscale modeling of blood flow: From single cells to blood rheology Biomech. Model. Mechanobiol. 2014 13 239 258 10.1007/s10237-013-0497-9
Lázaro G.R. Hernández-Machado A. Pagonabarraga I. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity Soft Matter 2014 10 7195 10.1039/C4SM00894D
Fedosov D.A. Peltomäki M. Gompper G. Deformation and dynamics of red blood cells in flow through cylindrical microchannels Soft Matter 2014 10 4258 4267 10.1039/C4SM00248B 24752231
Ye T. Shi H. Peng L. Li Y. Numerical studies of a red blood cell in rectangular microchannels J. Appl. Phys. 2017 122 084701 10.1063/1.5000357
Fischer T.M. Tank-Tread Frequency of the Red Cell Membrane: Dependence on the Viscosity of the Suspending Medium Biophys. J. 2007 93 2553 2561 10.1529/biophysj.107.104505
Fischer T.M. Shape Memory of Human Red Blood Cells Biophys. J. 2004 86 3304 3313 10.1016/S0006-3495(04)74378-7
Abkarian M. Faivre M. Viallat A. Swinging of red blood cells under shear flow Phys. Rev. Lett. 2007 98 188302 10.1103/PhysRevLett.98.188302
Dupire J. Socol M. Viallat A. Full dynamics of a red blood cell in shear flow Proc. Natl. Acad. Sci. USA 2012 109 20808 20813 10.1073/pnas.1210236109
Guckenberger A. Kihm A. John T. Wagner C. Gekle S. Numerical–experimental observation of shape bistability of red blood cells flowing in a microchannel Soft Matter 2018 14 2032 2043 10.1039/C7SM02272G
Recktenwald S.M. Lopes M.G.M. Peter S. Hof S. Simionato G. Peikert K. Hermann A. Danek A. van Bentum K. Eichler H. et al. Erysense, a Lab-on-a-Chip-Based Point-of-Care Device to Evaluate Red Blood Cell Flow Properties With Multiple Clinical Applications Front. Physiol. 2022 13 884690 10.3389/fphys.2022.884690
Recktenwald S.M. Simionato G. Lopes M.G. Gamboni F. Dzieciatkowska M. Meybohm P. Zacharowski K. von Knethen A. Wagner C. Kaestner L. et al. Cross-talk between red blood cells and plasma influences blood flow and omics phenotypes in severe COVID-19 eLife 2022 11 e81316 10.7554/eLife.81316
Quint S. Christ A.F. Guckenberger A. Himbert S. Kaestner L. Gekle S. Wagner C. 3D tomography of cells in micro-channels Appl. Phys. Lett. 2017 111 103701 10.1063/1.4986392
Kihm A. Kaestner L. Wagner C. Quint S. Classification of red blood cell shapes in flow using outlier tolerant machine learning PLoS Comput. Biol. 2018 14 e1006278 10.1371/journal.pcbi.1006278
Martin-Wortham J. Recktenwald S.M. Lopes M.G.M. Kaestner L. Wagner C. Quint S. A deep learning-based concept for high throughput image flow cytometry Appl. Phys. Lett. 2021 118 123701 10.1063/5.0037336
Reichel F. Kräter M. Peikert K. Glaß H. Rosendahl P. Herbig M. Rivera Prieto A. Kihm A. Bosman G. Kaestner L. et al. Changes in Blood Cell Deformability in Chorea-Acanthocytosis and Effects of Treatment With Dasatinib or Lithium Front. Physiol. 2022 13 852946 10.3389/fphys.2022.852946
Lopes M.G.M. Recktenwald S.M. Simionato G. Murciano N. Eichler H. Wagner C. Quint S. Kaestner L. Big data in transfusion medicine and artificial intelligence analysis for red blood cell quality control Transfus. Med. Hemotherapy 2023
Reichel F. Mauer J. Ahsan Nawaz A. Gompper G. Guck J.R. Fedosov D. High Troughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability Biophys. J. 2019 116 123a 124a 10.1016/j.bpj.2018.11.688
Matthews K. Lamoureux E.S. Myrand-Lapierre M.E. Duffy S.P. Ma H. Technologies for measuring red blood cell deformability Lab Chip 2022 22 1254 1274 10.1039/D1LC01058A 35266475
Duez J. Holleran J. Ndour P. Pionneau C. Diakité S. Roussel C. Dussiot M. Amireault P. Avery V. Buffet P. Mechanical clearance of red blood cells by the human spleen: Potential therapeutic applications of a biomimetic RBC filtration method Transfus. Clin. Biol. 2015 22 151 157 10.1016/j.tracli.2015.05.004
Kaestner L. Minetti G. The potential of erythrocytes as cellular aging models Cell Death Differ. 2017 24 1475 1477 10.1038/cdd.2017.100 28622292
Thiagarajan P. Parker C.J. Prchal J.T. How Do Red Blood Cells Die? Front. Physiol. 2021 12 8 10 10.3389/fphys.2021.655393
Li H. Liu Z.L. Lu L. Buffet P. Karniadakis G.E. How the spleen reshapes and retains young and old red blood cells: A computational investigation PLoS Comput. Biol. 2021 17 e1009516 10.1371/journal.pcbi.1009516
Linderkamp O. Meiselman H. Geometric, osmotic, and membrane mechanical properties of density- separated human red cells Blood 1982 59 1121 1127 10.1182/blood.V59.6.1121.1121
Waugh R. Narla M. Jackson C. Mueller T. Suzuki T. Dale G. Rheologic properties of senescent erythrocytes: Loss of surface area and volume with red blood cell age Blood 1992 79 1351 1358 10.1182/blood.V79.5.1351.1351
Bosch F.H. Werre J.M. Schipper L. Roerdinkholder-Stoelwinder B. Huls T. Willekens F. Wichers G. Halie M.R. Determinants of red blood cell deformability in relation to cell age Eur. J. Haematol. 2009 52 35 41 10.1111/j.1600-0609.1994.tb01282.x
Gifford S.C. Derganc J. Shevkoplyas S.S. Yoshida T. Bitensky M.W. A detailed study of time-dependent changes in human red blood cells: From reticulocyte maturation to erythrocyte senescence Br. J. Haematol. 2006 135 395 404 10.1111/j.1365-2141.2006.06279.x
Antonelou M.H. Kriebardis A.G. Papassideri I.S. Aging and death signalling in mature red cells: From basic science to transfusion practice Blood Transfus. 2010 8 39 47 10.2450/2010.007S
Bosman G. Lasonder E. Groenen-Döpp Y. Willekens F. Werre J. Novotný V. Comparative proteomics of erythrocyte aging in vivo and in vitro J. Proteom. 2010 73 396 402 10.1016/j.jprot.2009.07.010 19660581
Huang Y.X. Wu Z.J. Mehrishi J. Huang B.T. Chen X.Y. Zheng X.J. Liu W.J. Luo M. Human red blood cell aging: Correlative changes in surface charge and cell properties J. Cell. Mol. Med. 2011 15 2634 2642 10.1111/j.1582-4934.2011.01310.x 21435169
Bizjak D.A. Brinkmann C. Bloch W. Grau M. Increase in Red Blood Cell-Nitric Oxide Synthase Dependent Nitric Oxide Production during Red Blood Cell Aging in Health and Disease: A Study on Age Dependent Changes of Rheologic and Enzymatic Properties in Red Blood Cells PLoS ONE 2015 10 e0125206 10.1371/journal.pone.0125206 25902315
Guglietta F. Behr M. Biferale L. Falcucci G. Sbragaglia M. On the effects of membrane viscosity on transient red blood cell dynamics Soft Matter 2020 16 6191 6205 10.1039/D0SM00587H 32567630
Recktenwald S.M. Graessel K. Maurer F.M. John T. Gekle S. Wagner C. Red blood cell shape transitions and dynamics in time-dependent capillary flows Biophys. J. 2022 121 23 36 10.1016/j.bpj.2021.12.009 34896369
Gürbüz A. Pak O.S. Taylor M. Sivaselvan M.V. Sachs F. Effects of membrane viscoelasticity on the red blood cell dynamics in a microcapillary Biophys. J. 2023 1 12 10.1016/j.bpj.2023.01.010
Bosch F. Werre J. Roerdinkholder-Stoelwinder B. Huls T. Willekens F. Halie M. Characteristics of red blood cell populations fractionated with a combination of counterflow centrifugation and Percoll separation Blood 1992 79 254 260 10.1182/blood.V79.1.254.254
D’Alessandro A. Blasi B. D’Amici G.M. Marrocco C. Zolla L. Red blood cell subpopulations in freshly drawn blood: Application of proteomics and metabolomics to a decades-long biological issue Blood Transfus. 2013 11 75 87 10.2450/2012.0164-11
Ermolinskiy P. Lugovtsov A. Yaya F. Lee K. Kaestner L. Wagner C. Priezzhev A. Effect of Red Blood Cell Aging In Vivo on Their Aggregation Properties In Vitro: Measurements with Laser Tweezers Appl. Sci. 2020 10 7581 10.3390/app10217581
Maurer F. John T. Makhro A. Bogdanova A. Minetti G. Wagner C. Kaestner L. Continuous Percoll Gradient Centrifugation of Erythrocytes—Explanation of Cellular Bands and Compromised Age Separation Cells 2022 11 1296 10.3390/cells11081296
Faivre M. Renoux C. Bessaa A. Da Costa L. Joly P. Gauthier A. Connes P. Mechanical Signature of Red Blood Cells Flowing Out of a Microfluidic Constriction Is Impacted by Membrane Elasticity, Cell Surface-to-Volume Ratio and Diseases Front. Physiol. 2020 11 576 10.3389/fphys.2020.00576
Rashidi Y. Simionato G. Zhou Q. John T. Kihm A. Bendaoud M. Krüger T. Bernabeu M.O. Kaestner L. Laschke M.W. et al. Red blood cell lingering modulates hematocrit distribution in the microcirculation Biophys. J. 2023 122 1526 1537 10.1016/j.bpj.2023.03.020
Fischer T. Haest C. Stöhr M. Kamp D. Deuticke B. Selective alteration of erythrocyte deformability by SH-reagents. Evidence for an involvement of spectrin in membrane shear elasticity Biochim. Biophys. Acta (BBA)-Biomembr. 1978 510 270 282 10.1016/0005-2736(78)90027-5
Clavería V. Aouane O. Thiébaud M. Abkarian M. Coupier G. Misbah C. John T. Wagner C. Clusters of red blood cells in microcapillary flow: Hydrodynamic versus macromolecule induced interaction Soft Matter 2016 12 8235 8245 10.1039/C6SM01165A
Bogdanova A. Kaestner L. Simionato G. Wickrema A. Makhro A. Heterogeneity of Red Blood Cells: Causes and Consequences Front. Physiol. 2020 11 392 10.3389/fphys.2020.00392
Pfafferott C. Nash G. Meiselman H. Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging Biophys. J. 1985 47 695 704 10.1016/S0006-3495(85)83966-7 4016189
Shiga T. Sekiya M. Maeda N. Kon K. Okazaki M. Cell age-dependent changes in deformability and calcium accumulation of human erythrocytes Biochim. Biophys. Acta (BBA)-Biomembr. 1985 814 289 299 10.1016/0005-2736(85)90447-X
Danker G. Vlahovska P.M. Misbah C. Vesicles in Poiseuille Flow Phys. Rev. Lett. 2009 102 148102 10.1103/PhysRevLett.102.148102
Yazdani A.Z.K. Bagchi P. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow Phys. Rev. E 2011 84 026314 10.1103/PhysRevE.84.026314 21929097
Kaoui B. Tahiri N. Biben T. Ez-Zahraouy H. Benyoussef A. Biros G. Misbah C. Complexity of vesicle microcirculation Phys. Rev. E 2011 84 041906 10.1103/PhysRevE.84.041906 22181174
Kaoui B. Krüger T. Harting J. How does confinement affect the dynamics of viscous vesicles and red blood cells? Soft Matter 2012 8 9246 10.1039/c2sm26289d
Cordasco D. Yazdani A. Bagchi P. Comparison of erythrocyte dynamics in shear flow under different stress-free configurations Phys. Fluids 2014 26 041902 10.1063/1.4871300
Farutin A. Misbah C. Symmetry breaking and cross-streamline migration of three-dimensional vesicles in an axial Poiseuille flow Phys. Rev. E 2014 89 042709 10.1103/PhysRevE.89.042709
Sinha K. Graham M.D. Dynamics of a single red blood cell in simple shear flow Phys. Rev. E 2015 92 042710 10.1103/PhysRevE.92.042710
Mauer J. Mendez S. Lanotte L. Nicoud F. Abkarian M. Gompper G. Fedosov D.A. Flow-Induced Transitions of Red Blood Cell Shapes under Shear Phys. Rev. Lett. 2018 121 118103 10.1103/PhysRevLett.121.118103
Lehmann M. Müller S.J. Gekle S. Efficient viscosity contrast calculation for blood flow simulations using the lattice Boltzmann method Int. J. Numer. Methods Fluids 2020 92 1463 1477 10.1002/fld.4835
Dasanna A.K. Mauer J. Gompper G. Fedosov D.A. Importance of Viscosity Contrast for the Motion of Erythrocytes in Microcapillaries Front. Phys. 2021 9 666913 10.3389/fphy.2021.666913
Skalak R. Tozeren A. Zarda R. Chien S. Strain Energy Function of Red Blood Cell Membranes Biophys. J. 1973 13 245 264 10.1016/S0006-3495(73)85983-1
Helfrich W. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments Z. Naturforschung C 1973 28 693 703 10.1515/znc-1973-11-1209 4273690
Barthès-Biesel D. Diaz A. Dhenin E. Effect of Constitutive Laws for Two-Dimensional Membranes on Flow-Induced Capsule Deformation J. Fluid Mech. 2002 460 211 222 10.1017/S0022112002008352
Skotheim J.M. Secomb T.W. Red Blood Cells and Other Nonspherical Capsules in Shear Flow: Oscillatory Dynamics and the Tank-Treading-to-Tumbling Transition Phys. Rev. Lett. 2007 98 078301 10.1103/PhysRevLett.98.078301
Aouane O. Thiébaud M. Benyoussef A. Wagner C. Misbah C. Vesicle dynamics in a confined Poiseuille flow: From steady state to chaos Phys. Rev. E 2014 90 033011 10.1103/PhysRevE.90.033011 25314533
Mignon T. Mendez S. A theoretical investigation of the frisbee motion of red blood cells in shear flow Math. Model. Nat. Phenom. 2021 16 23 10.1051/mmnp/2021014
Hochmuth R. Worthy P. Evans E. Red cell extensional recovery and the determination of membrane viscosity Biophys. J. 1979 26 101 114 10.1016/S0006-3495(79)85238-8
Evans E.A. methods Methods Enzymology Elsevier Inc. Amsterdam, The Netherlands 1989 Volume 173 3 35 10.1016/S0076-6879(89)73003-2
Matteoli P. Nicoud F. Mendez S. Impact of the membrane viscosity on the tank-treading behavior of red blood cells Phys. Rev. Fluids 2021 6 043602 10.1103/PhysRevFluids.6.043602
Tomaiuolo G. Guido S. Start-up shape dynamics of red blood cells in microcapillary flow Microvasc. Res. 2011 82 35 41 10.1016/j.mvr.2011.03.004 21397612