[en] This paper proposes an innovative concept of adaptive constitutive soil modeling to optimize the complexity of the numerical simulation of shield tunneling. This concept involves the use of an adequate constitutive model for soil, in accordance with mechanical incidents in the domain, to reduce the number of complex soil parameters and computational costs, focusing on the accuracy of numerical predictions. In such an approach, adequate soil investigation can be scheduled by designing a limited number of sophisticated laboratory tests at certain locations, while the rest of the domain can be explored with basic conventional laboratory tests to identify ordinary soil parameters. This concept leads to obtaining adequate and dominant soil parameters at each depth to accurately simulate the phenomenological aspects of soil behavior and soil-tunnel boring machine (TBM)-tunnel interactions without inducing inadmissible uncertainty in terms of advanced soil parameters for unaffected zones. The numerical model accounts for such constructional components face support, grouting in the annular gap, and lining installation. The numerical model responses are studied through the investigation of the evolution of the ground subsidence, as well as soil stresses and lining forces. The behavior of the soil is assumed to be described by a family of hierarchical elastic-plastic constitutive models based on Mohr-Coulomb failure theory. In addition, the size of the target zone where the model adaption should be conducted is studied while its influences on model responses are addressed. Finally, the contribution of the proposed solution to reduce the uncertainty of the numerical predictions is evaluated.
Disciplines :
Civil engineering
Author, co-author :
ALIMARDANI LAVASAN, Arash ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Zhao, Chenyang; Dept. of Civil and Environmental Engineering, Ruhr-Univ. Bochum, Bochum, Germany
Schanz, Tom; Dept. of Civil and Environmental Engineering, Ruhr-Univ. Bochum, Bochum, Germany
External co-authors :
yes
Language :
English
Title :
Adaptive constitutive soil modeling concept in mechanized tunneling simulation
Abu-Farsakh, M. Y., and G. Z. Voyiadjis. 1999. "Computational model for the simulation of the shield tunneling process in cohesive soils." Int. J. Numer. Anal. Methods Geomech. 23 (1): 23-44. https://doi .org/10.1002/(SICI)1096-9853(199901)23:1<23::AID-NAG956>3 .0.CO;2-Z
Abu-Krisha, A. 1998. "Numerical modelling of TBM tunnelling in consolidated clay." Ph.D. thesis, Univ. of Innsbruck
Anagnostou, G., and K. Kovári. 1994. "The face stability of slurry-shielddriven tunnels." Tunnelling Underground Space Technol. 9 (2): 165-174. https://doi.org/10.1016/0886-7798(94)90028-0
Atkinson, J. H., and G. Sallfors. 1991. "Experimental determination of soil properties." In Proc., 10th European Conf. on Soil Mechanics and Foundation Engineering, 915-956. London: Taylor and Francis Group
Benz, T. 2006. "Small-strain stiffness of soils and its numerical consequences." Ph.D. thesis, Univ. of Stuttgart
Bernat, S., and B. Cambou. 1998. "Soil-structure interaction in shield tunnelling in soft soil." Comput. Geotech. 22 (3-4): 221-242. https://doi .org/10.1016/S0266-352X(98)00007-X
Brinkgreve, R. 1994. "Geomaterial models and numerical analysis of softening." Ph.D. thesis, Technical Univ. of Delft
Danas, K., and P. P. Castañeda. 2012. "Influence of the lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials." Int. J. Solids Struct. 49 (11-12): 1325-1342. https://doi.org/10.1016/j .ijsolstr.2012.02.006
Desai, C., S. Somasundaram, and G. Frantziskonis. 1986. "A hierarchical approach for constitutive modelling of geologic materials." Int. J. Numer. Anal. Methods Geomech. 10 (3): 225-257. https://doi.org/10 .1002/nag.1610100302
Dias, D., R. Kastner, and M. Maghazi. 1999. "Three dimensional simulation of slurry shield tunnelling." Geotechnical aspects of underground construction in soft ground, edited by O. Kusakabe, K. Fujita, and Y. Miyazaki, 351-356. Rotterdam, Netherlands: Balkema
Franzius, J. N., and D. M. Potts. 2005. "Influence of mesh geometry on three-dimensional finite-element analysis of tunnel excavation." Int. J. Geomech. 5 (3): 256-266. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:3(256)
Heaney, C., P. Bonnier, R. Brinkgreve, and M. Hicks. 2013. "An adaptive mesh refinement algorithm based on element subdivision with application to geomaterials." In Proc., 6th Int. Conf. on Adaptive Modeling and Simulation, 315-324. Barcelona, Spain: International Centre for Numerical Methods in Engineering (CIMNE)
Jancsecz, S., and W. Steiner. 1994. "Face support for a large mix-shield in heterogenous ground conditions." In Proc., 7th International Symposium Tunnelling'94, 531-550. Boston: Springer
Jongpradist, P., T. Kaewsri, A. Sawatparnich, S. Suwansawat, S. Youwai, W. Kongkitkul, and J. Sunitsakul. 2013. "Development of tunneling influence zones for adjacent pile foundations by numerical analyses." Tunnelling Underground Space Technol., 34: 96-109. https://doi.org /10.1016/j.tust.2012.11.005
Kasper, T., and G. Meschke. 2004. "A 3D finite element simulation model for TBM tunnelling in soft ground." Int. J. Numer. Anal. Methods Geomech. 28 (14): 1441-1460. https://doi.org/10.1002/nag.395
Komiya, K., K. Soga, H. Akagi, T. Hagiwara, and M. Bolton. 1999. "Finite element modelling of excavation and advancement processes of a shield tunnelling machine." Soils Found. 39 (3): 37-52. https://doi.org/10 .3208/sandf.39.3_37
Lavasan, A. A., C. Zhao, T. Barciaga, A. Schaufler, H. Steeb, and T. Schanz. 2018. "Numerical investigation of tunneling in saturated soil: The role of construction and operation periods." Acta Geotech. 13 (3): 671-691. https://doi.org/10.1007/s11440-017-0595-4
Liu, Y., B. Stratman, and S.Mahadevan. 2006. "Fatigue crack initiation life prediction of railroad wheels." Int. J. Fatigue, 28 (7): 747-756. https:// doi.org/10.1016/j.ijfatigue.2005.09.007
Molenkamp, F. 1988. "A simple model for isotropic non-linear elasticity of frictional materials." Int. J. Numer. Anal. Methods Geomech. 12 (5): 467-475. https://doi.org/10.1002/nag.1610120502
Möller, S. C., and P. A. Vermeer. 2008. "On numerical simulation of tunnel installation." Tunnelling Underground Space Technol. 23 (4): 461-475. https://doi.org/10.1016/j.tust.2007.08.004
Mollon, G., D. Dias, and A.-H. Soubra. 2013. "Probabilistic analyses of tunneling-induced ground movements." Acta Geotech. 8 (2): 181-199. https://doi.org/10.1007/s11440-012-0182-7
Schanz, T. 1998. "Zur Modellierung des mechanischen Verhaltens von Reibungsmaterialien." Habilitation thesis, Univ. of Stuttgart
Shah, R., C. Zhao, A. Lavasan, D. Peila, T. Schanz, and A. Lucarelli. 2017. "Influencing factors affecting the numerical simulation of the mechanized tunnel excavation using FEM and FDM techniques." In Proc., EURO:TUN 2017-IV Int. Conf. on Computational Methods in Tunneling and Subsurface Engineering, 483-490. Innsbruck, Austria: Arbeitsbereich für Festigkeitslehre und Baustatik
Shin, J. H., D. M. Potts, and L. Zdravkovic. 2002. "Three-dimensional modelling of NATM tunnelling in decomposed granite soil." Geotechnique, 52 (3): 187-200. https://doi.org/10.1680/geot.2002.52.3.187
Vakili, K. N., T. Barciaga, A. A. Lavasan, and T. Schanz. 2013. "A practical approach to constitutive models for the analysis of geotechnical problems." In Proc., 3rd Int. Symp. on Computational Geomechanics (ComGeo III), 738-749. Rhodes, Greece: International Centre for Computational Engineering
Vakili, K. N., A. A. Lavasan, M. Datcheva, and T. Schanz. 2014. "The influence of constitutive modeling in the numerical assessment of mechanized tunneling." In Proc., of 8th European Conf. on NumericalMethods in Geotechnical Engineering, 889-895. London: Taylor and Francis Group
Vermeer, P., and R. de Borst. 1984. "Non-associated plasticity for soils, concrete and rock." HERON 29 (3): 1-64
Vu, M. N., W. Broere, and J. Bosch. 2015. "Effects of cover depth on ground movements induced by shallow tunnelling." Tunnelling Underground Space Technol. 50: 499-506. https://doi.org/10.1016/j .tust.2015.09.006
Wang, T. H., and Y.-S. Lai. 2004. "Submodeling analysis for pathdependent thermomechanical problems." J. Electron. Packag. 127 (2): 135-140. https://doi.org/10.1115/1.1869513
Zhao, C., A. A. Lavasan, T. Barciaga, R. Hölter, M. Datcheva, and T. Schanz. 2014. "Constitutive parameter adjustment for mechanized tunneling with reference to sub-system effects." In Proc., 8th Int. Conf. on Numerical Methods and Applications, 217-225. Cham, Switzerland: Springer International Publishing
Zhao, C., A. A. Lavasan, T. Barciaga, C. Kämper, P. Mark, and T. Schanz. 2017. "Prediction of tunnel lining forces and deformations using analytical and numerical solutions." Tunnelling Underground Space Technol. 64: 164-176. https://doi.org/10.1016/j.tust.2017.01.015
Zhao, C., A. Lavasan, T. Barciaga, V. Zarev, M. Datcheva, and T. Schanz. 2015. "Model validation and calibration via back analysis for mechanized tunnel simulations: The Western Scheldt tunnel case." Comput. Geotech. 69: 601-614. https://doi.org/10.1016/j.compgeo.2015.07.003
Zienkiewicz, O. C., and J. Z. Zhu. 1987. "A simple error estimator and adaptive procedure for practical engineering analysis." Int. J. Num. Numer. Methods Eng. 24 (2): 337-357. https://doi.org/10.1002/nme .1620240206