Composition ranges; High frequency phonons; Lower frequencies; Magnetic phase diagrams; Magnetic transitions; Phonon mode; Raman signatures; Spin-phonon coupling; Electronic, Optical and Magnetic Materials; Condensed Matter Physics
Résumé :
[en] Alloyed MnxZn1-xPS3 samples have been grown covering the whole compositional range and studied by means of Raman spectroscopy at temperatures from 4 to 850 K. Our results, supported by superconducting quantum interference device magnetic measurements, allowed us, on one hand, to complete the magnetic phase diagram of MnxZn1-xPS3 and establish x≥0.3 as the composition at which the alloy retains antiferromagnetism and, on the other hand, to identify the Raman signatures indicative of a magnetic transition. The origin of these Raman signatures is discussed in terms of spin-phonon coupling, resulting in the appearance of low- and high-frequency phonon modes. For the alloy, an assignation of the first- and second-order modes is provided with the aid of first-principles lattice-dynamical calculations. The compositional dependence of all phonon modes is described, and the presence of zone-folded modes is shown to take place for the alloy. Finally, a comparison of the Raman spectra of ZnPS3 to other compounds of the transition metal phosphorus trisulfide family allowed us to conclude that low-frequency phonon peaks exhibit an abnormally large broadening. This is consistent with previous claims on the occurrence of a second-order Jahn-Teller effect that takes place for ZnPS3 and Zn-rich MnxZn1-xPS3.
Disciplines :
Physique
Auteur, co-auteur :
Oliva, Robert ; Department of Physics and Materials Science, University of Luxembourg, Belvaux, Luxembourg ; Geosciences Barcelona (geo3bcn-CSIC), Barcelona, Spain
Ritov, Esther; Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Helen Diller Quantum Center, Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa, Israel
Horani, Faris; Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Helen Diller Quantum Center, Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa, Israel
Etxebarria, Iñigo; Fisika Saila and EHU Quantum Center, Euskal Herriko Unibertsitatea UPV/EHU, Leioa, Spain
Budniak, Adam K.; Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Helen Diller Quantum Center, Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa, Israel
Amouyal, Yaron; Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
Lifshitz, Efrat; Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Helen Diller Quantum Center, Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa, Israel
GUENNOU, Mael ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Lattice dynamics and in-plane antiferromagnetism in MnxZn1-xPS3 across the entire composition range
F.H., E.R., and E.L. acknowledge the contribution of the QMR center and Dr. Anna Eyal for performing the SQUID measurements. The authors would like to thank Prof. Francisco Javier Zúñiga Lagares for his contribution to XRD measurements on the samples studied here. I.E. acknowledges the financial support of the “Ministerio de Ciencia e Innovación” (No. PID2019-106644GB-I00) and the Basque Country Government (No. IT1458-22). A.K.B. and E.L. were supported by the European Commission via the Marie Skłodowska-Curie action Phonsi (No. H2020-MSCA-ITN-642656).
V. P. Ningrum, B. Liu, W. Wang, Y. Yin, Y. Cao, C. Zha, H. Xie, X. Jiang, Y. Sun, S. Qin, Recent advances in two-dimensional magnets: Physics and devices towards spintronic applications, Research 2020, 1768918 (2020) 10.34133/2020/1768918.
M. Bernasconi, G. L. Marra, G. Benedek, L. Miglio, M. Jouanne, C. Julien, M. Scagliotti, and M. Balkanski, Lattice dynamics of layered (Equation presented) ((Equation presented) = Mn, Fe, Ni, Zn; (Equation presented)) compounds, Phys. Rev. B 38, 12089 (1988) 10.1103/PhysRevB.38.12089.
R. Brec, D. M. Schleich, G. Ouvrard, A. Louisy, and J. Rouxel, Physical properties of lithium intercalation compounds of the layered transition-metal chalcogenophosphites, Inorg. Chem. 18, 1814 (1979) 10.1021/ic50197a018.
B. L. Chittari, Y. Park, D. Lee, M. Han, A. H. MacDonald, E. Hwang, and J. Jung, Electronic and magnetic properties of single-layer (Equation presented) metal phosphorous trichalcogenides, Phys. Rev. B 94, 184428 (2016) 10.1103/PhysRevB.94.184428.
F. Wang, T. A. Shifa, P. Yu, P. He, Y. Liu, F. Wang, Z. Wang, X. Zhan, X. Lou, F. Xia, New frontiers on van der Waals layered metal phosphorous trichalcogenides, Adv. Funct. Mater. 28, 1802151 (2018) 10.1002/adfm.201802151.
T. Song, Z. Fei, M. Yankowitz, Z. Lin, Q. Jiang, K. Hwangbo, Q. Zhang, B. Sun, T. Taniguchi, K. Watanabe, Switching 2D magnetic states via pressure tuning of layer stacking, Nat. Mater. 18, 1298 (2019) 10.1038/s41563-019-0505-2.
P. A. Joy and S. Vasudevan, Magnetism in the layered transition-metal thiophosphates (Equation presented) ((Equation presented) = Mn, Fe, and Ni), Phys. Rev. B 46, 5425 (1992) 10.1103/PhysRevB.46.5425.
J. R. Morey, A. Scheie, J. P. Sheckelton, C. M. Brown, and T. M. McQueen, (Equation presented): Complex antiferromagnetic order on a honeycomb lattice, Phys. Rev. Mater. 3, 014410 (2019) 10.1103/PhysRevMaterials.3.014410.
E. K.-H. Lee, R. Schaffer, S. Bhattacharjee, and Y. B. Kim, Heisenberg-Kitaev model on the hyperhoneycomb lattice, Phys. Rev. B 89, 045117 (2014) 10.1103/PhysRevB.89.045117.
N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and D. Xiao, Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers, Phys. Rev. B 91, 235425 (2015) 10.1103/PhysRevB.91.235425.
Y. Yacoby, H. Zhou, R. Pindak, and I. BoŽović, Atomic-layer synthesis and imaging uncover broken inversion symmetry in (Equation presented) films, Phys. Rev. B 87, 014108 (2013) 10.1103/PhysRevB.87.014108.
J. P. Odile, J. J. Steger, and Aaron. Wold, Preparation and properties of the solid solution series zinc iron phosphorus trisulfide ((Equation presented), Inorg. Chem. 14, 2400 (1975) 10.1021/ic50152a019.
E. Lifshitz and A. H. Francis, Analysis of the ESR spectrum of manganese(II) impurity centers in the layered compound cadmium phosphide sulfide ((Equation presented)), J. Phys. Chem. 86, 4714 (1982) 10.1021/j100221a015.
N. Chandrasekharan and S. Vasudevan, Dilution of a layered antiferromagnet: Magnetism in (Equation presented), Phys. Rev. B 54, 14903 (1996) 10.1103/PhysRevB.54.14903.
D. J. Goossens and T. J. Hicks, The magnetic phase diagram of (Equation presented), J. Phys. Condens. Matter 10, 7643 (1998) 10.1088/0953-8984/10/34/017.
D. J. Goossens, A. J. Studer, S. J. Kennedy, and T. J. Hicks, The impact of magnetic dilution on magnetic order in (Equation presented), J. Phys. Condens. Matter 12, 4233 (2000) 10.1088/0953-8984/12/18/308.
M. Balkanski, K. P. Jain, R. Beserman, and M. Jouanne, Theory of interference distortion of Raman scattering line shapes in semiconductors, Phys. Rev. B 12, 4328 (1975) 10.1103/PhysRevB.12.4328.
G. Güntherodt, Light scattering in magnetic semiconductors, J. Magn. Magn. Mater. 11, 394 (1979) 10.1016/0304-8853(79)90298-1.
G. Güntherodt, W. Bauhofer, and G. Benedek, Zone-Boundary-Phonon Raman Scattering in (Equation presented) due to Modulation of Exchange Interaction, Phys. Rev. Lett. 43, 1427 (1979) 10.1103/PhysRevLett.43.1427.
M. Balkanski, M. Jouanne, G. Ouvrard, and M. Scagliotti, Effects due to spin ordering in layered (Equation presented) compounds revealed by inelastic light scattering, J. Phys. C Solid State Phys. 20, 4397 (1987) 10.1088/0022-3719/20/27/017.
M. Balkanski, M. Jouanne, and M. Scagliotti, Magnetic ordering induced raman scattering in (Equation presented) and (Equation presented) layered compounds, Pure Appl. Chem. 59, 1247 (1987) 10.1351/pac198759101247.
A. Hashemi, H.-P. Komsa, M. Puska, and A. V. Krasheninnikov, Vibrational properties of metal phosphorus trichalcogenides from first-principles calculations, J. Phys. Chem. C 121, 27207 (2017) 10.1021/acs.jpcc.7b09634.
J.-U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C.-H. Park, J.-G. Park, and H. Cheong, Ising-type magnetic ordering in atomically thin (Equation presented), Nano Lett. 16, 7433 (2016) 10.1021/acs.nanolett.6b03052.
A. McCreary, J. R. Simpson, T. T. Mai, R. D. McMichael, J. E. Douglas, N. Butch, C. Dennis, R. Valdés Aguilar, and A. R. Hight Walker, Quasi-two-dimensional magnon identification in antiferromagnetic (Equation presented) via magneto-raman spectroscopy, Phys. Rev. B 101, 064416 (2020) 10.1103/PhysRevB.101.064416.
K. Kurosawa, S. Saito, and Y. Yamaguchi, Neutron diffraction study on (Equation presented) and (Equation presented), J. Phys. Soc. Jpn. 52, 3919 (1983) 10.1143/JPSJ.52.3919.
E. Ressouche, M. Loire, V. Simonet, R. Ballou, A. Stunault, and A. Wildes, Magnetoelectric (Equation presented) as a candidate for ferrotoroidicity, Phys. Rev. B 82, 100408 (R) (2010) 10.1103/PhysRevB.82.100408.
K. Kim, S. Y. Lim, J. Kim, J.-U. Lee, S. Lee, P. Kim, K. Park, S. Son, C.-H. Park, J.-G. Park, Antiferromagnetic ordering in van der Waals 2D magnetic material (Equation presented) probed by raman spectroscopy, 2D Mater. 6, 041001 (2019) 10.1088/2053-1583/ab27d5.
W. Xing, L. Qiu, X. Wang, Y. Yao, Y. Ma, R. Cai, S. Jia, X. C. Xie, and W. Han, Magnon Transport in Quasi-Two-Dimensional van der Waals Antiferromagnets, Phys. Rev. X 9, 011026 (2019) 10.1103/PhysRevX.9.011026.
E. Lifshitz, A. H. Francis, and R. Clarke, An ESR and x-ray diffraction study of a first-order phase transition in (Equation presented), Solid State Commun. 45, 273 (1983) 10.1016/0038-1098(83)90479-9.
F. Boucher, M. Evain, and R. Brec, Phase transition upon (Equation presented) ordering in (Equation presented), Acta Crystallogr. B 51, 952 (1995) 10.1107/S0108768195004824.
C. Sourisseau, R. Cavagnat, M. Evain, and R. Brec, Raman evidence for a phase transition in (Equation presented), J. Raman Spectrosc. 27, 185 (1996) 10.1002/(SICI)1097-4555(199602)27:2%3C185::AID-JRS932%3E3.0.CO;2-G.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.107.104415 for additional Raman spectra and tables of calculated phonon frequencies.
A. J. Martinolich, C.-W. Lee, I.-T. Lu, S. C. Bevilacqua, M. B. Preefer, M. Bernardi, A. Schleife, and K. A. See, Solid-state divalent ion conduction in (Equation presented), Chem. Mater. 31, 3652 (2019) 10.1021/acs.chemmater.9b00207.
C. Sourisseau, J. P. Forgerit, and Y. Mathey, Vibrational study of layered (Equation presented) compounds intercalated with (Equation presented) and (Equation presented) cations, J. Phys. Chem. Solids 44, 119 (1983) 10.1016/0022-3697(83)90159-2.
G. Ouvrard, R. Brec, and J. Rouxel, Structural determination of some (Equation presented) layered phases ((Equation presented) = Mn, Fe, Co, Ni and Cd), Mater. Res. Bull. 20, 1181 (1985) 10.1016/0025-5408(85)90092-3.
E. Prouzet, G. Ouvrard, and R. Brec, Structure determination of (Equation presented), Mater. Res. Bull. 21, 195 (1986) 10.1016/0025-5408(86)90206-0.
L. Kang, M. Zhou, J. Yao, Z. Lin, Y. Wu, and C. Chen, Metal thiophosphates with good mid-infrared nonlinear optical performances: A first-principles prediction and analysis, J. Am. Chem. Soc. 137, 13049 (2015) 10.1021/jacs.5b07920.
R. Brec, G. Ouvrard, and J. Rouxel, Relationship between structure parameters and chemical properties in some (Equation presented) layered phases, Mater. Res. Bull. 20, 1257 (1985) 10.1016/0025-5408(85)90118-7.
R. Brec, Review on structural and chemical properties of transition metal phosphorous trisulfides (Equation presented), Solid State Ion. 22, 3 (1986) 10.1016/0167-2738(86)90055-X.
F. Boucher, M. Evain, and R. Brec, Second-order Jahn-Teller effect in (Equation presented) and (Equation presented) demonstrated by a non-harmonic behaviour of (Equation presented) and (Equation presented) ions, J. Alloys Compd. 215, 63 (1994) 10.1016/0925-8388(94)90819-2.
V. Zhukov, F. Boucher, P. Alemany, M. Evain, and S. Alvarez, Electronic structure, chemical bonding, and Jahn-Teller distortions in (Equation presented), Inorg. Chem. 34, 1159 (1995) 10.1021/ic00109a024.
A. V. Peschanskii, T. Ya. Babuka, K. E. Glukhov, M. Makowska-Janusik, S. L. Gnatchenko, and Yu. M. Vysochanskii, Raman study of a magnetic phase transition in the (Equation presented) single crystal, Low Temp. Phys. 45, 1082 (2019) 10.1063/1.5125909.
A. P. Cracknell, Scattering matrices for the raman effect in magnetic crystals, J. Phys. C Solid State Phys. 2, 500 (1969) 10.1088/0022-3719/2/3/314.
V. Yu. Davydov, I. N. Goncharuk, A. N. Smirnov, A. E. Nikolaev, W. V. Lundin, A. S. Usikov, A. A. Klochikhin, J. Aderhold, J. Graul, O. Semchinova, Composition dependence of optical phonon energies and raman line broadening in hexagonal (Equation presented) alloys, Phys. Rev. B 65, 125203 (2002) 10.1103/PhysRevB.65.125203.
R. Oliva, J. Ibáñez, R. Cuscó, R. Kudrawiec, J. Serafinczuk, O. Martínez, J. Jiménez, M. Henini, C. Boney, A. Bensaoula, Raman scattering by the (Equation presented) and (Equation presented)(LO) phonons of (Equation presented) epilayers ((Equation presented)) grown by molecular beam epitaxy, J. Appl. Phys. 111, 063502 (2012) 10.1063/1.3693579.
Y. Chen, D. O. Dumcenco, Y. Zhu, X. Zhang, N. Mao, Q. Feng, M. Zhang, J. Zhang, P.-H. Tan, Y.-S. Huang, Composition-dependent raman modes of (Equation presented) monolayer alloys, Nanoscale 6, 2833 (2014) 10.1039/C3NR05630A.
R. Vilarinho, D. J. Passos, E. C. Queirós, P. B. Tavares, A. Almeida, M. C. Weber, M. Guennou, J. Kreisel, and J. A. Moreira, Suppression of the cooperative Jahn-Teller distortion and its effect on the raman octahedra-rotation modes of (Equation presented), Phys. Rev. B 97, 144110 (2018) 10.1103/PhysRevB.97.144110.
J. Blasco, J. García, J. Campo, M. C. Sánchez, and G. Subías, Neutron diffraction study and magnetic properties of (Equation presented), Phys. Rev. B 66, 174431 (2002) 10.1103/PhysRevB.66.174431.
A. R. Wildes, S. J. Kennedy, and T. J. Hicks, True two-dimensional magnetic ordering in (Equation presented), J. Phys. Condens. Matter 6, L335 (1994) 10.1088/0953-8984/6/24/002.
A. R. Wildes, M. J. Harris, and K. W. Godfrey, Two-dimensional critical fluctuations in (Equation presented), J. Magn. Magn. Mater. 177-181 143 (1998) 10.1016/S0304-8853(97)00666-5.
Y.-J. Sun, Q.-H. Tan, X.-L. Liu, Y.-F. Gao, and J. Zhang, Probing the magnetic ordering of antiferromagnetic (Equation presented) by Raman spectroscopy, J. Phys. Chem. Lett. 10, 3087 (2019) 10.1021/acs.jpclett.9b00758.
J. Ibáñez, T. Woźniak, F. Dybala, R. Oliva, S. Hernández, and R. Kudrawiec, High-pressure raman scattering in bulk (Equation presented): Comparison of density functional theory methods in layered (Equation presented) compounds ((Equation presented) = Hf, Mo) under compression, Sci. Rep. 8, 12757 (2018) 10.1038/s41598-018-31051-y.
A. R. Wildes, B. Roessli, B. Lebech, and K. W. Godfrey, Spin waves and the critical behaviour of the magnetization in (Equation presented), J. Phys. Condens. Matter 10, 6417 (1998) 10.1088/0953-8984/10/28/020.
T. T. Mai, K. F. Garrity, A. McCreary, J. Argo, J. R. Simpson, V. Doan-Nguyen, R. V. Aguilar, and A. R. H. Walker, Magnon-phonon hybridization in 2D antiferromagnet (Equation presented), Sci. Adv. 7, eabj3106 (2021) 10.1126/sciadv.abj3106.
A. R. Wildes, H. M. Rønnow, B. Roessli, M. J. Harris, and K. W. Godfrey, Static and dynamic critical properties of the quasi-two-dimensional antiferromagnet (Equation presented), Phys. Rev. B 74, 094422 (2006) 10.1103/PhysRevB.74.094422.
A. K. Budniak, N. A. Killilea, S. J. Zelewski, M. Sytnyk, Y. Kauffmann, Y. Amouyal, R. Kudrawiec, W. Heiss, and E. Lifshitz, Exfoliated (Equation presented) with promising photoconductivity, Small 16, 1905924 (2020) 10.1002/smll.201905924.
G. Kresse and J. Hafner, (Equation presented) initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558 (1993) 10.1103/PhysRevB.47.558.
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996) 10.1103/PhysRevB.54.11169.
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett. 100, 136406 (2008) 10.1103/PhysRevLett.100.136406.
J. Yang, Y. Zhou, Q. Guo, Y. Dedkov, and E. Voloshina, Electronic, magnetic and optical properties of (Equation presented) ((Equation presented) = S, Se) monolayers with and without chalcogen defects: A first-principles study, RSC Adv. 10, 851 (2020) 10.1039/C9RA09030D.
M. Birowska, P. E. Faria Junior, J. Fabian, and J. Kunstmann, Large exciton binding energies in (Equation presented) as a case study of a van der Waals layered magnet, Phys. Rev. B 103, L121108 (2021) 10.1103/PhysRevB.103.L121108.
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study, Phys. Rev. B 57, 1505 (1998) 10.1103/PhysRevB.57.1505.
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015) 10.1016/j.scriptamat.2015.07.021.