[en] There is ongoing controversy about whether a coherent superposition of the occupied states of two fermionic modes should be regarded entangled or not, that is, whether its intrinsic quantum correlations are operationally accessible and useful as a resource. This has been questioned on the basis that such an entanglement cannot be accessed by local operations on individual modes due to the parity superselection rule which constrains the set of physical observables. In other words, one cannot observe violations of Bell's inequality. Here, we show, however, that entanglement of a two-mode fermionic state can be used as a genuine quantum resource in open-system thermodynamic processes, enabling one to perform tasks forbidden for separable states. We thus demonstrate that quantum thermodynamics can shed light on the nature of fermionic entanglement and the operational meaning of the different notions used to define it.
Disciplines :
Physique
Auteur, co-auteur :
PTASZYNSKI, Krzysztof ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Fermionic One-Body Entanglement as a Thermodynamic Resource.
Ministerstwo Edukacji i Nauki Foundational Questions Institute
Subventionnement (détails) :
K. P. is supported by the Scholarships of Minister of Science and Higher Education. This research was also supported by the FQXi Foundation, Project No. FQXi-IAF19-05.
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009). RMPHAT 0034-6861 10.1103/RevModPhys.81.865
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2010).
F. Benatti, R. Floreanini, F. Franchini, and U. Marzolino, Entanglement in indistinguishable particle systems, Phys. Rep. 878, 1 (2020). PRPLCM 0370-1573 10.1016/j.physrep.2020.07.003
G. C. Wick, A. S. Wightman, and E. P. Wigner, The intrinsic parity of elementary particles, Phys. Rev. 88, 101 (1952). PHRVAO 0031-899X 10.1103/PhysRev.88.101
S. Szalay, Z Zimborás, M. Máté, G. Barcza, C. Schilling, and Ö. Legeza, Fermionic systems for quantum information people, J. Phys. A 54, 393001 (2021). JPAMB5 1751-8113 10.1088/1751-8121/ac0646
N. T. Vidal, M. L. Bera, A. Riera, M. Lewenstein, and M. N. Bera, Quantum operations in an information theory for fermions, Phys. Rev. A 104, 032411 (2021). PLRAAN 2469-9926 10.1103/PhysRevA.104.032411
M. C. Bañuls, J. I. Cirac, and M. M. Wolf, Entanglement in fermionic systems, Phys. Rev. A 76, 022311 (2007). PLRAAN 1050-2947 10.1103/PhysRevA.76.022311
G. M. D'Ariano, F. Manessi, P. Perinotti, and A. Tosini, Fermionic computation is non-local tomographic and violates monogamy of entanglement, Europhys. Lett. 107, 20009 (2014). EULEEJ 0295-5075 10.1209/0295-5075/107/20009
G. M. D'Ariano, F. Manessi, P. Perinotti, and A. Tosini, The Feynman problem and fermionic entanglement: Fermionic theory versus qubit theory, Int. J. Mod. Phys. A 29, 1430025 (2014). IMPAEF 0217-751X 10.1142/S0217751X14300257
H. M. Wiseman and J. A. Vaccaro, Entanglement of Indistinguishable Particles Shared between Two Parties, Phys. Rev. Lett. 91, 097902 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.91.097902
H. M. Wiseman, S. D. Bartlett, and J. A. Vaccaro, Ferreting out the fluffy bunnies: Entanglement constrained by generalized superselection rules, in Laser Spectroscopy, edited by P. Hannaford, A. Sidorov, H. Bachor, and K. Baldwin (World Scientific, Singapore, 2004), pp. 307-314.
L. Ding, S. Mardazad, S. Das, S. Szalay, U. Schollwöck, Z. Zimborás, and C. Schilling, Concept of orbital entanglement and correlation in quantum chemistry, J. Chem. Theory Comput. 17, 79 (2021). JCTCCE 1549-9618 10.1021/acs.jctc.0c00559
L. Ding, Z. Zimborás, and C. Schilling, Quantifying electron entanglement faithfully, arXiv:2207.03377.
J. O. Ernst and F. Tennie, Mode entanglement in fermionic and bosonic harmonium, arXiv:2211.09647.
Here, for the sake of readability, we use a notation commonly used in quantum information to describe a system of two qubits; this is justified by the possibility of mapping a two-mode fermionic system onto a two-qubit system via Jordan-Wigner transformation. Accordingly, within this qubitlike notation, we use the standard tensor product symbol (Equation presented) to express the uncorrelated states of two subsystems.
D. Dasenbrook, J. Bowles, J. B. Brask, P. P. Hofer, C. Flindt, and N. Brunner, Single-electron entanglement and nonlocality, New J. Phys. 18, 043036 (2016). NJOPFM 1367-2630 10.1088/1367-2630/18/4/043036
E. Olofsson, P. Samuelsson, N. Brunner, and P. P. Potts, Quantum teleportation of single-electron states, Phys. Rev. B 101, 195403 (2020). PRBMDO 2469-9950 10.1103/PhysRevB.101.195403
T. Debarba, F. Iemini, G. Giedke, and N. Friis, Teleporting quantum information encoded in fermionic modes, Phys. Rev. A 101, 052326 (2020). PLRAAN 2469-9926 10.1103/PhysRevA.101.052326
N. Friis, Unlocking fermionic mode entanglement, New J. Phys. 18, 061001 (2016). NJOPFM 1367-2630 10.1088/1367-2630/18/6/061001
L. del Rio, J. Åberg, R. Renner, O. Dahlsten, and V. Vedral, The thermodynamic meaning of negative entropy, Nature (London) 474, 61 (2011). NATUAS 0028-0836 10.1038/nature10123
M. Esposito, K. Lindenberg, and C. Van den Broeck, Entropy production as correlation between system and reservoir, New J. Phys. 12, 013013 (2010). NJOPFM 1367-2630 10.1088/1367-2630/12/1/013013
N. J. Cerf and C. Adami, Negative Entropy and Information in Quantum Mechanics, Phys. Rev. Lett. 79, 5194 (1997). PRLTAO 0031-9007 10.1103/PhysRevLett.79.5194
K. G. H. Vollbrecht and M. M. Wolf, Conditional entropies and their relation to entanglement criteria, J. Math. Phys. (N.Y.) 43, 4299 (2002). JMAPAQ 0022-2488 10.1063/1.1498490
T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y. Hirayama, Coherent Manipulation of Electronic States in a Double Quantum Dot, Phys. Rev. Lett. 91, 226804 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.91.226804
J. Gorman, D. G. Hasko, and D. A. Williams, Charge-Qubit Operation of an Isolated Double Quantum Dot, Phys. Rev. Lett. 95, 090502 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.090502
M. Scandi, D. Barker, S. Lehmann, K. A. Dick, V. F. Maisi, and M. Perarnau-Llobet, Minimally Dissipative Information Erasure in a Quantum Dot via Thermodynamic Length, Phys. Rev. Lett. 129, 270601 (2022). PRLTAO 0031-9007 10.1103/PhysRevLett.129.270601
J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin, Experimental realization of a Szilard engine with a single electron, Proc. Natl. Acad. Sci. U.S.A. 111, 13786 (2014). PNASA6 0027-8424 10.1073/pnas.1406966111
M. V. Fichetti, Theory of electron transport in small semiconductor devices using the Pauli master equation, J. Appl. Phys. 83, 270 (1998). JAPIAU 0021-8979 10.1063/1.367149
G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale, Phys. Rep. 694, 1 (2017). PRPLCM 0370-1573 10.1016/j.physrep.2017.05.008
G. Schaller, Open Quantum Systems Far from Equilibrium (Springer, Heidelberg, 2014).
I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A 36, L205 (2003). JPHAC5 0305-4470 10.1088/0305-4470/36/14/101
V. Eisler and I. Peschel, On entanglement evolution across defects in critical chains, Europhys. Lett. 99, 20001 (2012). EULEEJ 0295-5075 10.1209/0295-5075/99/20001
D. Bruß, G. M. D'Ariano, M. Lewenstein, C. Macchiavello, A. Sen(De), and U. Sen, Distributed Quantum Dense Coding, Phys. Rev. Lett. 93, 210501 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.93.210501
R. Prabhu, A. K. Pati, A. Sen(De), and U. Sen, Exclusion principle for quantum dense coding, Phys. Rev. A 87, 052319 (2013). PLRAAN 1050-2947 10.1103/PhysRevA.87.052319
D. Yang, K. Horodecki, and A. Winter, Distributed Private Randomness Distillation, Phys. Rev. Lett. 123, 170501 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.170501
M. Vempati, N. Ganguly, I. Chakrabarty, and A. K. Pati, Witnessing negative conditional entropy, Phys. Rev. A 104, 012417 (2021). PLRAAN 2469-9926 10.1103/PhysRevA.104.012417
F. Verstraete and J. I. Cirac, Quantum Nonlocality in the Presence of Superselection Rules and Data Hiding Protocols, Phys. Rev. Lett. 91, 010404 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.91.010404
N. Schuch, F. Verstraete, and J. I. Cirac, Quantum entanglement theory in the presence of superselection rules, Phys. Rev. A 70, 042310 (2004). PLRAAN 1050-2947 10.1103/PhysRevA.70.042310
B. Morris, B. Yadin, M. Fadel, T. Zibold, P. Treutlein, and G. Adesso, Entanglement between Identical Particles is a Useful and Consistent Resource, Phys. Rev. X 10, 041012 (2020). PRXHAE 2160-3308 10.1103/PhysRevX.10.041012