Quantum Physics; cond-mat.quant-gas; Physics - Statistical Mechanics; High Energy Physics - Theory; General Physics and Astronomy
Résumé :
[en] The Kibble-Zurek mechanism (KZM) predicts that the average number of
topological defects generated upon crossing a continuous or quantum phase
transition obeys a universal scaling law with the quench time. Fluctuations in
the defect number near equilibrium are approximately of Gaussian form, in
agreement with the central limit theorem. Using large deviations theory, we
characterize the universality of fluctuations beyond the KZM and report the
exact form of the rate function in the transverse-field quantum Ising model. In
addition, we characterize the scaling of large deviations in an arbitrary
continuous phase transition, building on recent evidence establishing the
universality of the defect number distribution.
Disciplines :
Physique
Auteur, co-auteur :
BALDUCCI, Federico ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Beau, Mathieu
YANG, Jing ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Adolfo DEL CAMPO ECHEVARRIA
Gambassi, Andrea
del Campo, Adolfo
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Large Deviations Beyond the Kibble-Zurek Mechanism
J. Dziarmaga, Adv. Phys. 59, 1063 (2010). ADPHAH 0001-8732 10.1080/00018732.2010.514702
A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011). RMPHAT 0034-6861 10.1103/RevModPhys.83.863
A. del Campo and W. H. Zurek, Intl. J. Mod. Phys. A 29, 1430018 (2014). 10.1142/S0217751X1430018X
A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005). PRBMDO 1098-0121 10.1103/PhysRevB.72.161201
W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95, 105701 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.105701
B. Damski, Phys. Rev. Lett. 95, 035701 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.035701
J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.245701
W. H. Zurek and U. Dorner, Phil. Trans. R. Soc. A 366, 2953 (2008). PTRMAD 1364-503X 10.1098/rsta.2008.0069
T. W. B. Kibble, J. Phys. A 9, 1387 (1976). JPHAC5 0305-4470 10.1088/0305-4470/9/8/029
T. W. B. Kibble, Phys. Rep. 67, 183 (1980). PRPLCM 0370-1573 10.1016/0370-1573(80)90091-5
W. H. Zurek, Nature (London) 317, 505 (1985). NATUAS 0028-0836 10.1038/317505a0
W. H. Zurek, Phys. Rep. 276, 177 (1996). PRPLCM 0370-1573 10.1016/S0370-1573(96)00009-9
S. Deutschländer, P. Dillmann, G. Maret, and P. Keim, Proc. Natl. Acad. Sci. U.S.A. 112, 6925 (2015). PNASA6 0027-8424 10.1073/pnas.1500763112
S. Maegochi, K. Ienaga, and S. Okuma, Phys. Rev. Lett. 129, 227001 (2022). PRLTAO 0031-9007 10.1103/PhysRevLett.129.227001
K. Du, X. Fang, C. Won, C. De, F.-T. Huang, W. Xu, H. You, F. J. Gómez-Ruiz, A. del Campo, and S.-W. Cheong, Nat. Phys. 19, 1495 (2023). NPAHAX 1745-2473 10.1038/s41567-023-02112-5
C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, and B. P. Anderson, Nature (London) 455, 948 (2008). NATUAS 0028-0836 10.1038/nature07334
G. Lamporesi, S. Donadello, S. Serafini, F. Dalfovo, and G. Ferrari, Nat. Phys. 9, 656 (2013). NPAHAX 1745-2473 10.1038/nphys2734
N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, Science 347, 167 (2015). SCIEAS 0036-8075 10.1126/science.1258676
M. Anquez, B. A. Robbins, H. M. Bharath, M. Boguslawski, T. M. Hoang, and M. S. Chapman, Phys. Rev. Lett. 116, 155301 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.155301
B. Ko, J. W. Park, and Y. Shin, Nat. Phys. 15, 1227 (2019). NPAHAX 1745-2473 10.1038/s41567-019-0650-1
C.-R. Yi, S. Liu, R.-H. Jiao, J.-Y. Zhang, Y.-S. Zhang, and S. Chen, Phys. Rev. Lett. 125, 260603 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.125.260603
L.-Y. Qiu, H.-Y. Liang, Y.-B. Yang, H.-X. Yang, T. Tian, Y. Xu, and L.-M. Duan, Sci. Adv. 6, eaba7292 (2020). SACDAF 2375-2548 10.1126/sciadv.aba7292
S. Ulm, J. Roßnagel, G. Jacob, C. Degünther, S. T. Dawkins, U. G. Poschinger, R. Nigmatullin, A. Retzker, M. B. Plenio, F. Schmidt-Kaler, and K. Singer, Nat. Commun. 4, 2290 (2013). NCAOBW 2041-1723 10.1038/ncomms3290
K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin, T. Burgermeister, D. M. Meier, K. Kuhlmann, A. Retzker, M. B. Plenio, W. H. Zurek, A. del Campo, and T. E. Mehlstäubler, Nat. Commun. 4, 2291 (2013). NCAOBW 2041-1723 10.1038/ncomms3291
J.-M. Cui, Y.-F. Huang, Z. Wang, D.-Y. Cao, J. Wang, W.-M. Lv, L. Luo, A. del Campo, Y.-J. Han, C.-F. Li, and G.-C. Guo, Sci. Rep. 6, 33381 (2016). SRCEC3 2045-2322 10.1038/srep33381
J.-M. Cui, F. J. Gómez-Ruiz, Y.-F. Huang, C.-F. Li, G.-C. Guo, and A. del Campo, Commun. Phys. 3, 44 (2020). CMPYEL 0868-3166 10.1038/s42005-020-0306-6
B.-W. Li, Y.-K. Wu, Q.-X. Mei, R. Yao, W.-Q. Lian, M.-L. Cai, Y. Wang, B.-X. Qi, L. Yao, L. He, Z.-C. Zhou, and L.-M. Duan, PRX Quantum 4, 010302 (2023). 2691-3399 10.1103/PRXQuantum.4.010302
A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P. Zoller, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Nature (London) 568, 207 (2019). NATUAS 0028-0836 10.1038/s41586-019-1070-1
S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletić, and M. D. Lukin, Nature (London) 595, 227 (2021). NATUAS 0028-0836 10.1038/s41586-021-03582-4
B. Gardas, J. Dziarmaga, W. H. Zurek, and M. Zwolak, Sci. Rep. 8, 4539 (2018). SRCEC3 2045-2322 10.1038/s41598-018-22763-2
P. Weinberg, M. Tylutki, J. M. Rönkkö, J. Westerholm, J. A. Åström, P. Manninen, P. Törmä, and A. W. Sandvik, Phys. Rev. Lett. 124, 090502 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.124.090502
Y. Bando, Y. Susa, H. Oshiyama, N. Shibata, M. Ohzeki, F. J. Gómez-Ruiz, D. A. Lidar, S. Suzuki, A. del Campo, and H. Nishimori, Phys. Rev. Res. 2, 033369 (2020). PPRHAI 2643-1564 10.1103/PhysRevResearch.2.033369
A. D. King, Nat. Phys. 18, 1324 (2022). NPAHAX 1745-2473 10.1038/s41567-022-01741-6
L. Cincio, J. Dziarmaga, M. M. Rams, and W. H. Zurek, Phys. Rev. A 75, 052321 (2007). PLRAAN 1050-2947 10.1103/PhysRevA.75.052321
A. del Campo, Phys. Rev. Lett. 121, 200601 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.200601
A. del Campo, F. J. Gómez-Ruiz, and H.-Q. Zhang, Phys. Rev. B 106, L140101 (2022). PRBMDO 2469-9950 10.1103/PhysRevB.106.L140101
F. J. Gómez-Ruiz, J. J. Mayo, and A. del Campo, Phys. Rev. Lett. 124, 240602 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.124.240602
J. J. Mayo, Z. Fan, G.-W. Chern, and A. del Campo, Phys. Rev. Res. 3, 033150 (2021). PPRHAI 2643-1564 10.1103/PhysRevResearch.3.033150
A. del Campo, F. J. Gómez-Ruiz, Z.-H. Li, C.-Y. Xia, H.-B. Zeng, and H.-Q. Zhang, J. High Energy Phys. 06 (2021) 061. JHEPFG 1029-8479 10.1007/JHEP06(2021)061
F. J. Gómez-Ruiz, D. Subires, and A. del Campo, Phys. Rev. B 106, 134302 (2022). PRBMDO 2469-9950 10.1103/PhysRevB.106.134302
R. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer, New York, 2006), 10.1007/978-1-4613-8533-2.
H. Touchette, Phys. Rep. 478, 1 (2009). PRPLCM 0370-1573 10.1016/j.physrep.2009.05.002
T. Dorlas, Statistical Mechanics: Fundamentals and Model Solutions (CRC Press, Boca Raton, FL, 2021), 10.1201/9781003037170.
A. Gambassi and A. Silva, Phys. Rev. Lett. 109, 250602 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.109.250602
J. Goold, F. Plastina, A. Gambassi, and A. Silva, The role of quantum work statistics in many-body physics, in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer International Publishing, Cham, 2018), pp. 317-336.
G. Perfetto, L. Piroli, and A. Gambassi, Phys. Rev. E 100, 032114 (2019). PRESCM 2470-0045 10.1103/PhysRevE.100.032114
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.131.230401, which includes Refs. [48-51], for a complete derivation of the transverse-field Ising model results, additional plots, and the proof of universality when fast-decaying long-range interactions are added.
D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett. 113, 156402 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.156402
J. Yang, S. Pang, A. del Campo, and A. N. Jordan, Phys. Rev. Res. 4, 013133 (2022). PPRHAI 2643-1564 10.1103/PhysRevResearch.4.013133
A. Dutta and A. Dutta, Phys. Rev. B 96, 125113 (2017). PRBMDO 2469-9950 10.1103/PhysRevB.96.125113
L. Pezzè, M. Gabbrielli, L. Lepori, and A. Smerzi, Phys. Rev. Lett. 119, 250401 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.250401
B. Damski and M. M. Rams, J. Phys. A 47, 025303 (2013). JPAMB5 1751-8113 10.1088/1751-8113/47/2/025303
B. Damski and W. H. Zurek, Phys. Rev. A 73, 063405 (2006). PLRAAN 1050-2947 10.1103/PhysRevA.73.063405
R. Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Science (Cambridge University Press, Cambridge, England, 2018), 10.1017/9781108231596.
P. Laguna and W. H. Zurek, Phys. Rev. Lett. 78, 2519 (1997). PRLTAO 0031-9007 10.1103/PhysRevLett.78.2519
A. Yates and W. H. Zurek, Phys. Rev. Lett. 80, 5477 (1998). PRLTAO 0031-9007 10.1103/PhysRevLett.80.5477