Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
An essay on deformation measures in isotropic thin shell theories. Bending versus curvature
Ghiba, Ionel-Dumitrel; Lewintan, Peter; SKY, Adam et al.
2023
 

Documents


Texte intégral
2312.10928.pdf
Preprint Auteur (1.69 MB) Licence Creative Commons - Attribution, Pas d'Utilisation Commerciale, Pas de Modification
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Mathematical Physics; Mathematics - Mathematical Physics
Résumé :
[en] It has become commonplace for the stored energy function of any realistic shell model to align ``within first order" with the classical Koiter membrane-bending (flexural) shell model. In this paper, we assess whether certain extended Cosserat shell models are consistent with the classical linear Koiter model. In doing this, we observe that there are numerous reasons why a modified version of the classical Koiter model should be considered, a consensus reached not only by Koiter himself but also by Sanders and Budiansky, who independently developed the same theory during the same period. To provide a comprehensive overview of the strain measures employed in our Cosserat shell models, this paper presents them in a unified manner and compares them with the strain measures previously utilized in the literature. We show that all our new strain tensors either generalize (in the case of nonlinear constrained or unconstrained models) or coincide (in the case of the linear constrained model) with the strain tensors recognized as the ``best" or those possessing a well-defined geometric interpretation connected to bending or curvature.
Disciplines :
Ingénierie mécanique
Auteur, co-auteur :
Ghiba, Ionel-Dumitrel
Lewintan, Peter
SKY, Adam  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Neff, Patrizio
Langue du document :
Anglais
Titre :
An essay on deformation measures in isotropic thin shell theories. Bending versus curvature
Date de publication/diffusion :
2023
Disponible sur ORBilu :
depuis le 20 décembre 2023

Statistiques


Nombre de vues
89 (dont 1 Unilu)
Nombre de téléchargements
145 (dont 0 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu