Extended Huygens-Fresnel principle; Fourier transform method; Pulsed Laguerre higher-order cosh-Gaussian beams; Relative spectral shift; Turbulent maritime environment; Cosh-Gaussian beams; Extended huygens-fresnel principles; High-order; Higher-order; Laguerre; Maritime environment; Pulsed laguerre high-order cosh-gaussian beam; Spectral shift; Electronic, Optical and Magnetic Materials; Atomic and Molecular Physics, and Optics; Electrical and Electronic Engineering
Abstract :
[en] This study investigates the propagation of a pulsed Laguerre higher-order cosh-Gaussian beam in turbulent maritime environments. Using the extended Huygens-Fresnel principle and the Fourier Transform method, we derive the formula for beam propagation in a marine environment. The analysis includes the influence of maritime turbulence, transverse positions, and initial beam parameters on the spectral intensity of the propagated beam. Graphical representations illustrate these effects, and numerical calculations demonstrate the relative spectral shift at various radial coordinates. The findings reveal dependencies on the refractive index structure constant, pulse duration, and beam order. Notably, on-axis spectral intensity experiences a blue shift, while off-axis spectral intensity undergoes a red shift with increasing radial coordinate. The study also highlights specific cases of the considered beam, providing valuable insights for information coding and transmission applications.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Benzehoua, Halima; Laboratory LPNAMME, Laser Physics Group, Departments of Physics, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco
BAYRAKTAR, Mert ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Belafhal, Abdelmajid; Laboratory LPNAMME, Laser Physics Group, Departments of Physics, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco
External co-authors :
yes
Language :
English
Title :
Influence of maritime turbulence on the spectral changes of pulsed Laguerre higher-order cosh-Gaussian beam
Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U. S., Department of Commerce (1970)
Agrawal, G.P.: Far-field diffraction of pulsed optical beams in dispersive media". Opt. Commun. 167, 15–22 (1999) DOI: 10.1016/S0030-4018(99)00303-X
Andrews, L.C., Phillips, R.L.: Laser Beam Propagation through Random Media. SPIE Press, Bellingham (2005) DOI: 10.1117/3.626196
Bayraktar, M.: Effect of aperture averaging on four petal Gaussian beams in atmospheric turbulence. Int. Adv. Res. Eng. J. 5, 26–30 (2021a) DOI: 10.35860/iarej.803508
Bayraktar, M.: Properties of hyperbolic sinusoidal Gaussian beam propagating through strong atmospheric turbulence. Microw. Opt. Technol. Lett. 63, 1595–1600 (2021b) DOI: 10.1002/mop.32799
Bayraktar, M.: Average intensity of astigmatic hyperbolic sinusoidal Gaussian beam propagating in oceanic turbulence. Phys. Scr. 96, 075501–075504 (2021c) DOI: 10.1088/1402-4896/abce36
Bayraktar, M.: Performance of finite energy Airy Hermite Gaussian beam in strong atmospheric turbulence. Photon Netw. Commun. 45, 89–95 (2023) DOI: 10.1007/s11107-023-00992-4
Belafhal, A., Hricha, Z., Dalil-Essakali, L., Usman, T.: A note on some integrals involving Hermite polynomials and their applications. Adv. Math. Mod. Appl. 5, 313–319 (2020)
Belafhal, A., Chib, S., Khannous, F., Usman, T.: Evaluation of integral transforms using special functions with applications to biological tissues. Comput. Appl. Math. 40, 156–178 (2021) DOI: 10.1007/s40314-021-01542-2
Benzehoua, H., Belafhal, A.: Analyzing the spectral characteristics of a pulsed Laguerre higher-order cosh-Gaussian beam propagating through a paraxial ABCD optical system. Opt. Quant. Electron. 55, 663–681 (2023a) DOI: 10.1007/s11082-023-04959-7
Benzehoua, H., Belafhal, A.: Spectral properties of pulsed Laguerre higher-order cosh-Gaussian beam propagating through the turbulent atmosphere. Opt. Commun. 541, 129492–129502 (2023b) DOI: 10.1016/j.optcom.2023.129492
Benzehoua, H., Belafhal, A.: Analysis of the behavior of pulsed vortex beams in oceanic turbulence. Opt. Quant. Electron. 55, 1–14 (2023c) DOI: 10.1007/s11082-023-04992-6
Benzehoua, H., Belafhal, A.: The effects of atmospheric turbulence on the spectral changes of diffracted pulsed hollow higher-order cosh-Gausian beam. Opt. Quant. Electron. 55, 973–993 (2023d) DOI: 10.1007/s11082-023-05205-w
Boufalah, F., Ez-Zariy, L., Dalil-Essakali, L., Belafhal, A.: Introduction of generalized Bessel-Laguerre-Gaussian beams and its central intensity travelling a turbulent atmosphere. Opt. Quant. Electron. 50, 305–320 (2018) DOI: 10.1007/s11082-018-1573-2
Chib, S., Dalil-Essakali, L., Belafhal, A.: Effects of turbulent atmosphere on the spectral density of Bessel-modulated Gaussian Schell-model beams. Opt. Quant. Electron. 54, 468–479 (2022) DOI: 10.1007/s11082-022-03853-y
Ding, C., Feng, X., Zhang, P., Wang, H., Zhang, Y.: Influence of oceanic turbulence on the spectral switches of partially coherent pulsed beams. J. Phys. Conf. Series 1, 1–9 (2018)
Duan, M., Tian, Y., Zhang, Y., Li, J.: Influence of biological tissue and spatial correlation on spectral changes of Gaussian-Schell model vortex beam. Opt. Lasers Eng. 134, 106224–106230 (2020) DOI: 10.1016/j.optlaseng.2020.106224
Eckart, C., Ferris, H.G.: Equations of motion of the ocean and atmosphere. Rev. Mod. Phys. 28, 48–52 (1956)
Ez-Zariy, L., Boufalah, F., Dalil-Essakali, L., Belafhal, A.: Effects of a turbulent atmosphere on an apertured Lommel-Gaussian beam. Optik 127, 11534–11543 (2016) DOI: 10.1016/j.ijleo.2016.09.073
Friehe, C.A., La Rue, J.C., Champagne, F.H., Gibson, C.H., Dreyer, G.F.: Effects of temperature and humidity fluctuations on the optical refractive index in the marine boundary layer. J. Opt. Soc. Am. 65, 1502–1511 (1975) DOI: 10.1364/JOSA.65.001502
Gbur, G., Visser, T.D., Wolf, E.: Anomalous behavior of spectra near phase singularities of focused waves. Phys. Rev. Lett. 88, 013901–013906 (2001) DOI: 10.1103/PhysRevLett.88.013901
Grayshan, K.J., Vetelino, F.S., Young, C.Y.: A marine atmospheric spectrum for laser propagation. Waves Random Complex Media 18(1), 173–184 (2008) DOI: 10.1080/17455030701541154
Nossir, N., Dalil-Essakali, L., Belafhal, A.: Behavior of the central intensity of generalized Humbert-Gaussian beams against the atmospheric turbulence. Opt. Quant. Electron. 53, 665–677 (2021) DOI: 10.1007/s11082-021-03316-w
Pu, J., Zhang, H., Nemoto, S.: Spectral shifts and spectral switches of partially coherent light passing through an aperture. Opt. Commun. 162, 57–63 (1999)
Wang, X., Liu, Z., Huang, K., Sun, J.: Spectral shifts generated by scattering of Gaussian Schell-model arrays beam from a deterministic medium. Opt. Commun. 387, 230–234 (2017) DOI: 10.1016/j.optcom.2016.11.073
Wolf, E.: Red shifts and blue shifts of spectral lines emitted by two correlated sources. Phys. Rev. Lett. 58, 2646–2648 (1987) DOI: 10.1103/PhysRevLett.58.2646
Wolf, E., Foley, J.T., Gori, F.: Frequency shifts of spectral lines produced by scattering from spatially random media. J. Opt. Soc. Am. A 6, 1142–1149 (1989) DOI: 10.1364/JOSAA.6.001142
Yadav, B.K., Bisht, N.S., Mehrotra, R., Kandpal, H.C.: Diffraction-induced spectral anomalies for information encoding and information hiding–possibilities and limitations. Opt. Commun. 277, 24–32 (2007a) DOI: 10.1016/j.optcom.2007.04.059
Yadav, B.K., Rizvi, S.A.M., Raman, S., Mehrotra, R., Kandpal, H.C.: Information encoding by spectral anomalies of spatially coherent light diffracted by an annular aperture. Opt. Commun. 269, 253–260 (2007b) DOI: 10.1016/j.optcom.2006.08.016
Yadav, B.K., Raman, S., Kandpal, H.C.: Information exchange in free spacing using spectral switching of diffracted polychromatic light: possibilities and limitations. J. Opt. Soc. Am. A 25, 2952–2959 (2008) DOI: 10.1364/JOSAA.25.002952