[en] Stable isotope labelling by amino acids in cell culture (SILAC) in conjunction with MS analysis is a sensitive and reliable technique for quantifying relative differences in protein abundance and posttranslational modifications between cell populations. We develop and utilise SILAC-MS workflows for quantitative proteomics in the fungal pathogen Candida albicans. Arginine metabolism provides important cues for escaping host defences during pathogenesis, which limits the use of auxotrophs in Candida research. Our strategy eliminates the need for engineering arginine auxotrophs for SILAC experiments and allows the use of ARG4 as selectable marker during strain construction. Cells that are auxotrophic for lysine are successfully labelled with both lysine and arginine stable isotopes. We find that prototrophic C. albicans preferentially uses exogenous arginine and down-regulates internal production, which allow it to achieve high incorporation rates. However, similar to other yeast, C. albicans is able to metabolise heavy arginine to heavy proline, which compromised the accuracy of protein quantification. A computational method is developed to correct for the incorporation of heavy proline. In addition, we utilise the developed SILAC labelling in C. albicans for the global quantitative proteomic analysis of a strain expressing a phosphatase-dead mutant Cdc14PD .
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Kaneva, Iliyana N; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK ; Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
LONGWORTH, Joseph ; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
Sudbery, Peter E; Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
Dickman, Mark J; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
External co-authors :
yes
Language :
English
Title :
Quantitative Proteomic Analysis in Candida albicans Using SILAC-Based Mass Spectrometry.
Biotechnology and Biological Sciences Research Council Engineering and Physical Sciences Research Council
Funding text :
I.N.K. was a student funded by the BBSRC White Rose DTP (BB/J014443/1). M.J.D. and P.E.S. acknowledge support from the Biotechnology and Biological Sciences Research Council UK (BB/M012166/1 and BB/J002305/1) and M.J.D. further acknowledges support from Engineering and Physical Sciences Research Council UK.
M. Bantscheff, M. Schirle, G. Sweetman, J. Rick, B. Kuster, Anal. Bioanal. Chem. 2007, 389, 1017.
G. Zhang, D. Fenyo, T. A. Neubert, J. Proteome Res. 2009, 8, 1285.
X. Chen, S. Wei, Y. Ji, X. Guo, F. Yang, Proteomics 2015, 15, 3175.
F. Frohlich, R. Christiano, T. C. Walther, Mol. Cell. Proteomics 2013, 12, 1995.
M. Martin-Perez, J. Villen, Anal. Chem. 2015, 87, 4008.
S. E. Ong, B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen, A. Pandey, M. Mann, Mol. Cell. Proteomics 2002, 1, 376.
A. Gruhler, J. V. Olsen, S. Mohammed, P. Mortensen, N. J. Færgeman, M. Mann, O. N. Jensen, Mol. Cell. Proteomics 2005, 4, 310.
C. Lossner, U. Warnken, A. Pscherer, M. Schnolzer, Anal. Biochem. 2011, 412, 123.
B. Blagoev, M. Mann, Methods 2006, 40, 243.
F. Schmidt, M. Strozynski, S. S. Salus, H. Nilsen, B. Thiede, Rapid Commun. Mass Spectrom. 2007, 21, 3919.
S. C. Bendall, C. Hughes, M. H. Stewart, B. Doble, M. Bhatia, G. A. Lajoie, Mol. Cell. Proteomics 2008, 7, 1587.
C. C. Bicho, F. de Lima Alves, Z. A. Chen, J. Rappsilber, K. E. Sawin, Mol. Cell. Proteomics 2010, 9, 1567.
W. E. Borek, J. Zou, J. Rappsilber, K. E. Sawin, PLoS One 2015, 10, e0129548.
D. Van Hoof, M. W. Pinkse, D. W. Oostwaard, C. L. Mummery, A. J. Heck, J. Krijgsveld, Nat. Methods 2007, 4, 677.
S. K. Park, L. Liao, J. Y. Kim, J. R. Yates, 3rd, Nat. Methods 2009, 6, 184.
B. van Breukelen, H. W. van den Toorn, M. M. Drugan, A. J. Heck, Bioinformatics 2009, 25, 1472.
A. Pasculescu, E. M. Schoof, P. Creixell, Y. Zheng, M. Olhovsky, R. Tian, J. So, R. D. Vanderlaan, T. Pawson, R. Linding, K. Colwill, J. Proteomics 2014, 100, 167.
C. C. Kibbler, S. Seaton, R. A. Barnes, W. R. Gransden, R. E. Holliman, E. M. Johnson, J. D. Perry, D. J. Sullivan, J. A. Wilson, J. Hosp. Infect. 2003, 54, 18.
C. J. Nobile, A. D. Johnson, Ann. Rev. Microbiol. 2015, 69, 71.
M. Schaller, C. Borelli, H. C. Korting, B. Hube, Mycoses 2005, 48, 365.
M. C. Lorenz, J. A. Bender, G. R. Fink, Eukaryot. Cell 2004, 3, 1076.
S. Ghosh, D. H. Navarathna, D. D. Roberts, J. T. Cooper, A. L. Atkin, T. M. Petro, K. W. Nickerson, Infect. Immun. 2009, 77, 1596.
H. Lavoie, A. Sellam, C. Askew, A. Nantel, M. Whiteway, BMC Genom. 2008, 9, 578.
S. Gola, R. Martin, A. Walther, A. Dunkler, J. Wendland, Yeast 2003, 20, 1339.
A. Pandey, J. S. Andersen, M. Mann, Sci. STKE 2000, 2000, pl1.
J. Cox, M. Mann, Nat. Biotechnol. 2008, 26, 1367.
W. Chang, J. Cheng, J. J. Allaire, Y. Xie, J. McPherson, 2017, https://cran.r-project.org/web/packages/shiny/index.html.
J. A. Vizcaino, A. Csordas, N. Del-Toro, J. A. Dianes, J. Griss, I. Lavidas, G. Mayer, Y. Perez-Riverol, F. Reisinger, T. Ternent, Q. W. Xu, R. Wang, H. Hermjakob, Nucleic Acids Res. 2016, 44, 11033.
S. E. Ong, I. Kratchmarova, M. Mann, J. Proteome Res. 2003, 2, 173.
J. M. Lim, K. S. Lee, H. A. Woo, D. Kang, S. G. Rhee, J. Cell Biol. 2015, 210, 23.