Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
CADOps-Net: Jointly Learning CAD Operation Types and Steps from Boundary-Representations
DUPONT, Elona Marcelle Eugénie; CHERENKOVA, Kseniya; KACEM, Anis et al.
2022In Proceedings - 2022 International Conference on 3D Vision, 3DV 2022
Peer reviewed
 

Documents


Texte intégral
2208.10555.pdf
Postprint Auteur (19.58 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
3D computer vision; B Rep; CAD; computer vision; Dataset; deep learning; Segmentation; Shape recognition and analysis; B rep; Boundary representations; Computer-aided design; Deep learning; Design operations; Shape recognition; Shape-analysis; Artificial Intelligence; Computer Vision and Pattern Recognition; Signal Processing
Résumé :
[en] 3D reverse engineering is a long sought-after, yet not completely achieved goal in the Computer-Aided Design (CAD) industry. The objective is to recover the construction history of a CAD model. Starting from a Boundary Representation (B-Rep) of a CAD model, this paper proposes a new deep neural network, CADOps-Net, that jointly learns the CAD operation types and the decomposition into different CAD operation steps. This joint learning allows to divide a B-Rep into parts that were created by various types of CAD operations at the same construction step; therefore providing relevant information for further recovery of the design history. Furthermore, we propose the novel CC3D-Ops dataset that includes over 37k CAD models annotated with CAD operation type labels and step labels. Compared to existing datasets, the complexity and variety of CC3D-Ops models are closer to those used for industrial purposes. Our experiments, conducted on the proposed CC3D-Ops and the publicly available Fusion360 datasets, demonstrate the competitive performance of CADOps-Net with respect to state-of-the-art, and confirm the importance of the joint learning of CAD operation types and steps.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DUPONT, Elona Marcelle Eugénie ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
CHERENKOVA, Kseniya ;  University of Luxembourg ; Artec 3D, Luxembourg
KACEM, Anis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
ALI, Sk Aziz ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > CVI2 > Team Djamila AOUADA
Arzhannikov, Ilya;  Artec 3D, Luxembourg
Gusev, Gleb;  Artec 3D, Luxembourg
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
CADOps-Net: Jointly Learning CAD Operation Types and Steps from Boundary-Representations
Date de publication/diffusion :
2022
Nom de la manifestation :
2022 International Conference on 3D Vision (3DV)
Lieu de la manifestation :
Prague, Cze
Date de la manifestation :
12-09-2022 => 15-09-2022
Sur invitation :
Oui
Titre de l'ouvrage principal :
Proceedings - 2022 International Conference on 3D Vision, 3DV 2022
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
ISBN/EAN :
978-1-66545-670-8
Peer reviewed :
Peer reviewed
Subventionnement (détails) :
Acknowledgement: The present project is supported by the National Research Fund, Luxembourg under the BRIDGES2021/IS/16849599/FREE-3D and IF/17052459/CASCADES projects, and by Artec 3D.
Disponible sur ORBilu :
depuis le 15 décembre 2023

Statistiques


Nombre de vues
120 (dont 4 Unilu)
Nombre de téléchargements
79 (dont 3 Unilu)

citations Scopus®
 
11
citations Scopus®
sans auto-citations
7
OpenCitations
 
1
citations OpenAlex
 
13
citations WoS
 
8

Bibliographie


Publications similaires



Contacter ORBilu