[en] The increasing complexity of modern automotive applications presents difficulties when running them on the on-board units (OBUs) of vehicles. While 5G/6G vehicular edge computing networks (VECNs) offer potential solutions through computation task offloading, ensuring prompt, energy-efficient access to these networks remains a significant challenge. To overcome these challenges, reconfigurable intelligent surfaces (RIS) can play an important role in 6G vehicular networks. With RIS, networks can provide better connectivity, increased data rate and energy efficient access, and communication channel security. In this paper, we utilize zero-energy RIS (ze-RIS) to aid vehicular computation offloading while maximizing the energy and time savings while meeting the task and environmental constraints. A joint power and offloading mechanism controlling DRL-driven RIS-assisted energy efficient task offloading (DREEO) scheme is proposed. DREEO utilizes a hybrid approach that combines binary and partial offloading mechanisms, complemented by an intelligent communication link switching mechanism. This strategy helps in saving both energy and time effectively. An efficiency factor, serving as both a performance indicator and a reward function, is introduced for the DRL agent, considering both saved energy and time. Through extensive evaluations, DREEO scheme shown an increase in task success rate from 2.13% to 7.36% and has improved the efficiency factor from 21.97 to 51.27. Furthermore, compared to other evaluated schemes, the DREEO scheme consistently outperforms them in terms of reward and the TFPS ratio, the DRL properties.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Mirza, Muhammad Ayzed ; BUPT-QMUL EM Theory and Application International Research Lab, Beijing University of Posts and Telecommunications, Beijing, China ; School of Computer and Information Science and also with Institute for AI Industrial Technology Research, Hubei Engineering University, Xiaogan City, China ; Department of Computer Science, Superior University, Lahore, Pakistan
Yu, Junsheng; BUPT-QMUL EM Theory and Application International Research Lab, Beijing University of Posts and Telecommunications, Beijing, China ; School of Physics and Electronic Information, Anhui Normal University, Wuhu, China ; School of Intelligence and Digital Engineering, Luoyang Vocational College of Science and Technology, Luoyang, China
Ahmed, Manzoor ; School of Computer and Information Science and also with Institute for AI Industrial Technology Research, Hubei Engineering University, Xiaogan City, China
Raza, Salman ; Department of Computer Science, National Textile University, Faisalabad, Pakistan
KHAN, Wali Ullah ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Xu, Fang ; School of Computer and Information Science and also with Institute for AI Industrial Technology Research, Hubei Engineering University, Xiaogan City, China
Nauman, Ali ; Department of Information and Communication Engineering, Yeungnam University, South Korea
This research was supported by the MOE (Ministry of Education of China) Project of Humanities and Social Sciences ( 23YJAZH169 ), the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation ( T2020017 ).
Abeta, S., 3GPP TR 36.814: Further advancements for E-UTRA physical layer aspects. The 3rd Generation Partnership Project (3GPP), 2017.
Ahmed, M., Alshahrani, H.M., Alruwais, N., Asiri, M.M., Al Duhayyim, M., Khan, W.U., Nauman, A., et al. Joint optimization of UAV-IRS placement and resource allocation for wireless powered mobile edge computing networks. J. King Saud Univ. Comput. Inf. Sci., 35(8), 2023, 101646.
Ahmed, M., Raza, S., Mirza, M.A., Aziz, A., Khan, M.A., Khan, W.U., Li, J., Han, Z., A survey on vehicular task offloading: Classification, issues, and challenges. J. King Saud Univ. Comput. Inf. Sci. 34:7 (2022), 4135–4162.
Ahmed, M., Wahid, A., Laique, S.S., Khan, W.U., Ihsan, A., Xu, F., Chatzinotas, S., Han, Z., A survey on STAR-RIS: Use cases, recent advances, and future research challenges. IEEE Internet Things J., 2023.
Ahmed, I., Yan, S., Rawat, D.B., Pu, C., Dynamic resource allocation for IRS assisted energy harvesting systems with statistical delay constraint. IEEE Trans. Veh. Technol. 71:2 (2021), 2158–2163.
Akhavan, Z., Esmaeili, M., Badnava, B., Yousefi, M., Sun, X., Devetsikiotis, M., Zarkesh-Ha, P., Deep reinforcement learning for online latency aware workload offloading in mobile edge computing. GLOBECOM 2022-2022 IEEE Global Communications Conference, 2022, IEEE, 2218–2223.
Ayzed Mirza, M., Yu, J., Raza, S., Krichen, M., Ahmed, M., Khan, W.U., Rabie, K., Shongwe, T., DRL-assisted delay optimized task offloading in automotive-industry 5.0 based VECNs. J. King Saud Univ. Comput. Inf. Sci., 2023.
Chen, C., Zeng, Y., Li, H., Liu, Y., Wan, S., A multi-hop task offloading decision model in MEC-enabled internet of vehicles. IEEE Internet Things J., 2022.
Dong, S., Zhan, J., Hu, W., Mohajer, A., Bavaghar, M., Mirzaei, A., Energy-efficient hierarchical resource allocation in uplink-downlink decoupled NOMA HetNets. IEEE Trans. Netw. Serv. Manag., 2023.
Du, J., Sun, Y., Zhang, N., Xiong, Z., Sun, A., Ding, Z., Cost-effective task offloading in NOMA-enabled vehicular mobile edge computing. IEEE Syst. J., 2022.
Guo, L., Jia, J., Chen, J., Du, A., Wang, X., Joint task offloading and resource allocation in STAR-RIS assisted noma system. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), 2022, IEEE, London, United Kingdom, 1–5, 10.1109/VTC2022-Fall57202.2022.10013059.
Hazarika, B., Singh, K., Li, C.-P., Biswas, S., Multi-agent DRL-based computation offloading in multiple RIS-aided IoV networks. MILCOM 2022-2022 IEEE Military Communications Conference (MILCOM), 2022, IEEE, 1–6.
Huang, C., Zappone, A., Alexandropoulos, G.C., Debbah, M., Yuen, C., Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wireless Commun. 18:8 (2019), 4157–4170.
Khan, W.U., Ihsan, A., Nguyen, T.N., Ali, Z., Javed, M.A., NOMA-enabled backscatter communications for green transportation in automotive-industry 5.0. IEEE Trans. Ind. Inform. 18:11 (2022), 7862–7874.
Khan, W.U., Jamshed, M.A., Lagunas, E., Chatzinotas, S., Li, X., Ottersten, B., Energy efficiency optimization for backscatter enhanced NOMA cooperative V2X communications under imperfect CSI. IEEE Trans. Intell. Transp. Syst., 2022.
Khan, W.U., Javed, M.A., Nguyen, T.N., Khan, S., Elhalawany, B.M., Energy-efficient resource allocation for 6G backscatter-enabled NOMA IoV networks. IEEE Trans. Intell. Transp. Syst. 23:7 (2021), 9775–9785.
Khan, W.U., Lagunas, E., Ali, Z., Javed, M.A., Ahmed, M., Chatzinotas, S., Ottersten, B., Popovski, P., Opportunities for physical layer security in UAV communication enhanced with intelligent reflective surfaces. IEEE Wirel. Commun. 29:6 (2022), 22–28.
Khan, W.U., Lagunas, E., Mahmood, A., Ali, Z., Asif, M., Chatzinotas, S., Ottersten, B., Integration of NOMA with reflecting intelligent surfaces: A multi-cell optimization with SIC decoding errors. IEEE Trans. Green Commun. Netw., 2023.
Lee, W.C., Estimate of channel capacity in Rayleigh fading environment. IEEE Trans. Veh. Technol. 39:3 (1990), 187–189.
Michailidis, E.T., Miridakis, N.I., Michalas, A., Skondras, E., Vergados, D.J., Energy optimization in dual-RIS UAV-aided MEC-enabled internet of vehicles. Sensors, 21(13), 2021, 4392.
Mirza, M.A., Junsheng, Y., Raza, S., Ahmed, M., Asif, M., Irshad, A., Kumar, N., MCLA task offloading framework for 5G-NR-V2X-based heterogeneous VECNs. IEEE Trans. Intell. Transp. Syst., 2023.
Mitsiou, N.A., Papanikolaou, V.K., Diamantoulakis, P.D., Karagiannidis, G.K., Energy-aware optimization of zero-energy device networks. IEEE Commun. Lett. 26:4 (2022), 858–862.
Mohajer, A., Daliri, M.S., Mirzaei, A., Ziaeddini, A., Nabipour, M., Bavaghar, M., Heterogeneous computational resource allocation for NOMA: Toward green mobile edge-computing systems. IEEE Trans. Serv. Comput. 16:2 (2022), 1225–1238.
Mohajer, A., Sorouri, F., Mirzaei, A., Ziaeddini, A., Rad, K.J., Bavaghar, M., Energy-aware hierarchical resource management and backhaul traffic optimization in heterogeneous cellular networks. IEEE Syst. J. 16:4 (2022), 5188–5199.
Mukherjee, M., Kumar, V., Kumar, S., Mavromoustakis, C., Zhang, Q., Guo, M., RIS-assisted task offloading for wireless dead zone to minimize delay in edge computing. GLOBECOM 2022-2022 IEEE Global Communications Conference, 2022, IEEE, 2554–2559.
Naik, G., Choudhury, B., Park, J.-M., IEEE 802.11 bd & 5G NR V2X: Evolution of radio access technologies for V2X communications. IEEE Access 7 (2019), 70169–70184.
Naser, S., Bariah, L., Muhaidat, S., Basar, E., Zero-energy devices empowered 6G networks: Opportunities, key technologies, and challenges. 2023.
Nguyen, K., Drew, S., Huang, C., Zhou, J., Parked vehicles task offloading in edge computing. IEEE Access 10 (2022), 41592–41606.
Pan, C., Zhou, G., Zhi, K., Hong, S., Wu, T., Pan, Y., Ren, H., Di Renzo, M., Swindlehurst, A.L., Zhang, R., et al. An overview of signal processing techniques for RIS/IRS-aided wireless systems. IEEE J. Sel. Top. Sign. Proces., 2022.
Pei, X., Yin, H., Tan, L., Cao, L., Li, Z., Wang, K., Zhang, K., Björnson, E., RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials. IEEE Trans. Commun. 69:12 (2021), 8627–8640.
Rahmatov, N., Baek, H., RIS-carried UAV communication: Current research, challenges, and future trends. ICT Express, 2023.
Raza, S., Ahmed, M., Ahmad, H., Mirza, M.A., Habib, M.A., Wang, S., Task offloading in mmwave based 5G vehicular cloud computing. J. Ambient Intell. Humaniz. Comput., 2022, 1–13.
Raza, S., Wang, S., Ahmed, M., Anwar, M.R., Mirza, M.A., Khan, W.U., Task offloading and resource allocation for IoV using 5G NR-V2X communication. IEEE Internet Things J. 9:13 (2021), 10397–10410.
Ren, H., Chen, Z., Hu, G., Peng, Z., Pan, C., Wang, J., Transmission design for active RIS-aided simultaneous wireless information and power transfer. IEEE Wireless Commun. Lett., 2023.
Sarkar, D., Yadav, S.S., Pal, V., Kumar, N., et al. Intelligent reflecting surface aided NOMA-HARQ based IoT framework for future wireless networks. IEEE Trans. Veh. Technol., 2023.
Shabir, M.W., Nguyen, T.N., Mirza, J., Ali, B., Javed, M.A., Transmit and reflect beamforming for max-min SINR in IRS-aided MIMO vehicular networks. IEEE Trans. Intell. Transp. Syst., 2022.
Shaikh, M.H.N., Rabie, K., Li, X., Tsiftsis, T., Nauryzbayev, G., On the performance of dual RIS-assisted V2I communication under nakagami-m fading. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), 2022, IEEE, 1–5.
Shu, W., Li, Y., Joint offloading strategy based on quantum particle swarm optimization for MEC-enabled vehicular networks. Digit. Commun. Netw., 2022.
Shuai, R., Wang, L., Guo, S., Zhang, H., Adaptive task offloading in vehicular edge computing networks based on deep reinforcement learning. 2021 IEEE/CIC International Conference on Communications in China (ICCC), 2021, IEEE, Xiamen, China, 10.1109/ICCC52777.2021.9580313.
Stan, C., Rommel, S., De Miguel, I., Olmos, J.J.V., Durán, R.J., Monroy, I.T., 5G radio resource allocation for communication and computation offloading. 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2023, IEEE, 1–6.
Sun, Y., Zhang, X., A2C learning for tasks segmentation with cooperative computing in edge computing networks. GLOBECOM 2022-2022 IEEE Global Communications Conference, 2022, IEEE, 2236–2241.
Tang, F., Mao, B., Kato, N., Gui, G., Comprehensive survey on machine learning in vehicular network: technology, applications and challenges. IEEE Commun. Surv. Tutor. 23:3 (2021), 2027–2057.
Xu, J., Ai, B., Chen, L., Wu, L., Deep reinforcement learning for communication and computing resource allocation in RIS aided MEC networks. ICC 2022-IEEE International Conference on Communications, 2022, IEEE, 3184–3189.
Yang, L., Li, P., Meng, F., Yu, S., Performance analysis of RIS-assisted UAV communication systems. IEEE Trans. Veh. Technol., 2022.
Yang, G., Liang, Y.-C., Zhang, R., Pei, Y., Modulation in the air: Backscatter communication over ambient OFDM carrier. IEEE Trans. Commun. 66:3 (2017), 1219–1233.
Yang, K., Shi, Y., Zhou, Y., Yang, Z., Fu, L., Chen, W., Federated machine learning for intelligent IoT via reconfigurable intelligent surface. IEEE Netw. 34:5 (2020), 16–22.
Ye, Q., Shi, W., Qu, K., He, H., Zhuang, W., Shen, X., Joint RAN slicing and computation offloading for autonomous vehicular networks: A learning-assisted hierarchical approach. IEEE Open J. Veh. Technol. 2 (2021), 272–288.
Yuan, X., Chen, J., Zhang, N., Ni, J., Yu, F.R., Leung, V.C., Digital twin-driven vehicular task offloading and IRS configuration in the internet of vehicles. IEEE Trans. Intell. Transp. Syst. 23:12 (2022), 24290–24304.
Zhang, Q., Liang, Y.-C., Poor, H.V., Reconfigurable intelligent surface assisted MIMO symbiotic radio networks. IEEE Trans. Commun. 69:7 (2021), 4832–4846.
Zhang, T., Ren, P., Xu, D., Ren, Z., RIS subarray optimization with reinforcement learning for green symbiotic communications in internet of things (IoT). IEEE Internet Things J., 2023.
Zhang, X., Wu, W., Liu, S., Wang, J., An efficient computation offloading and resource allocation algorithm in RIS empowered MEC. Comput. Commun. 197 (2023), 113–123.
Zhang, S., Zhang, R., Intelligent reflecting surface aided multi-user communication: Capacity region and deployment strategy. IEEE Trans. Commun. 69:9 (2021), 5790–5806.