Paper published on a website (Scientific congresses, symposiums and conference proceedings)
Flexible Payload Configuration for Satellites using Machine Learning
OLIVEIRA KUHFUSS DE MENDONÇA, Marcele; ORTIZ GOMEZ, Flor de Guadalupe; QUEROL, Jorge et al.
2023IEEE International Conference on Machine Learning for Communication and Networking
 

Files


Full Text
2310.11966 (1).pdf
Author postprint (190.38 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Computer Science - Learning; cs.SY; eess.SY
Abstract :
[en] Satellite communications, essential for modern connectivity, extend access to maritime, aeronautical, and remote areas where terrestrial networks are unfeasible. Current GEO systems distribute power and bandwidth uniformly across beams using multi-beam footprints with fractional frequency reuse. However, recent research reveals the limitations of this approach in heterogeneous traffic scenarios, leading to inefficiencies. To address this, this paper presents a machine learning (ML)-based approach to Radio Resource Management (RRM). We treat the RRM task as a regression ML problem, integrating RRM objectives and constraints into the loss function that the ML algorithm aims at minimizing. Moreover, we introduce a context-aware ML metric that evaluates the ML model's performance but also considers the impact of its resource allocation decisions on the overall performance of the communication system.
Disciplines :
Electrical & electronics engineering
Author, co-author :
OLIVEIRA KUHFUSS DE MENDONÇA, Marcele  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
ORTIZ GOMEZ, Flor de Guadalupe  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
QUEROL, Jorge  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
LAGUNAS, Eva  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
VASQUEZ-PERALVO, Juan Andres ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
MONZON BAEZA, Victor  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
External co-authors :
no
Language :
English
Title :
Flexible Payload Configuration for Satellites using Machine Learning
Publication date :
18 October 2023
Event name :
IEEE International Conference on Machine Learning for Communication and Networking
Event place :
Sweden
Event date :
5–8 May 2024
Audience :
International
FnR Project :
SmartSpace
Name of the research project :
U-AGR-8064 - ESA-SPAICE (01/11/2021 - 31/01/2024) - CHATZINOTAS Symeon
Funders :
ESA - European Space Agency
Funding number :
4000134522/21/NL/FGL
Commentary :
in review for conference
Available on ORBilu :
since 08 December 2023

Statistics


Number of views
198 (21 by Unilu)
Number of downloads
156 (8 by Unilu)

OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBilu