Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Practical Program Repair via Preference-based Ensemble Strategy
Zhong, Wenkang; Li, Chuanyi; Liu, Kui et al.
2024In ICSE'24: Proceedings of the 46th International Conference on Software Engineering (ICSE 2024)
Peer reviewed
 

Documents


Texte intégral
2309.08211.pdf
Preprint Auteur (1.05 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Science - Software Engineering
Résumé :
[en] To date, over 40 Automated Program Repair (APR) tools have been designed with varying bug-fixing strategies, which have been demonstrated to have complementary performance in terms of being effective for different bug classes. Intuitively, it should be feasible to improve the overall bug-fixing performance of APR via assembling existing tools. Unfortunately, simply invoking all available APR tools for a given bug can result in unacceptable costs on APR execution as well as on patch validation (via expensive testing). Therefore, while assembling existing tools is appealing, it requires an efficient strategy to reconcile the need to fix more bugs and the requirements for practicality. In light of this problem, we propose a Preference-based Ensemble Program Repair framework (P-EPR), which seeks to effectively rank APR tools for repairing different bugs. P-EPR is the first non-learning-based APR ensemble method that is novel in its exploitation of repair patterns as a major source of knowledge for ranking APR tools and its reliance on a dynamic update strategy that enables it to immediately exploit and benefit from newly derived repair results. Experimental results show that P-EPR outperforms existing strategies significantly both in flexibility and effectiveness.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Zhong, Wenkang
Li, Chuanyi
Liu, Kui
Xu, Tongtong
BISSYANDE, Tegawendé François d Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Ge, Jidong
Luo, Bin
Ng, Vincent
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Practical Program Repair via Preference-based Ensemble Strategy
Date de publication/diffusion :
14 avril 2024
Nom de la manifestation :
International Conference on Software Engineering (ICSE 2024)
Lieu de la manifestation :
Lisbon, Portugal
Date de la manifestation :
14-20 April, 2024
Numéro de la conférence :
46
Manifestation à portée :
International
Titre de l'ouvrage principal :
ICSE'24: Proceedings of the 46th International Conference on Software Engineering (ICSE 2024)
Maison d'édition :
IEEE, Washington, DC, Etats-Unis
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet européen :
H2020 - 949014 - NATURAL - Natural Program Repair
Organisme subsidiant :
Union Européenne
Subventionnement (détails) :
This research was partially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 949014)
Commentaire :
Accepted by icse2024 early
Disponible sur ORBilu :
depuis le 03 décembre 2023

Statistiques


Nombre de vues
93 (dont 0 Unilu)
Nombre de téléchargements
100 (dont 0 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
citations OpenAlex
 
5

Bibliographie


Publications similaires



Contacter ORBilu